Yanyan Jiang , Feng Zhou , Haihua Yao , Hong Wang , Hong Wu , Ye Huang , Mancang Gu
{"title":"利福平中基因毒性杂质的鉴定和定量分析开发并验证针对 1-氨基-4-甲基哌嗪的 LC-MS/MS 方法","authors":"Yanyan Jiang , Feng Zhou , Haihua Yao , Hong Wang , Hong Wu , Ye Huang , Mancang Gu","doi":"10.1016/j.jpba.2024.116459","DOIUrl":null,"url":null,"abstract":"<div><p>Rifampicin, essential for long-term tuberculosis treatment, requires rigorous control of non-therapeutic impurities due to their potential adverse, including mutagenic effects. Reports on control strategies for genotoxic impurities in rifampicin have been limited. This study introduced an analytical method to identify potential genotoxic impurities from the synthesis of raw materials. The structure of the 25-deacetyl-23-acetyl-rifampicin genotoxic impurity was confirmed using nuclear magnetic resonance, high-resolution mass spectrometry (HRMS), and high-performance liquid chromatography (HPLC). An HPLC-HRMS method was established and validated for detecting another genotoxic impurity, 1-amino-4-methylpiperazine, adhering to the International Council on Harmonization guidelines, which include specificity, linearity, detection and quantification limits, accuracy, precision, and robustness. These developments improve the quality control strategy for genotoxic impurities in rifampicin, ensuring product safety.</p></div>","PeriodicalId":16685,"journal":{"name":"Journal of pharmaceutical and biomedical analysis","volume":"252 ","pages":"Article 116459"},"PeriodicalIF":3.1000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0731708524004990/pdfft?md5=e1b6e3bcb42101b01ad5742b878ce1e7&pid=1-s2.0-S0731708524004990-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Identification and quantitative analysis of genotoxic impurities in rifampicin: Development and validation of a targeted LC-MS/MS method for 1-amino-4-methylpiperazine\",\"authors\":\"Yanyan Jiang , Feng Zhou , Haihua Yao , Hong Wang , Hong Wu , Ye Huang , Mancang Gu\",\"doi\":\"10.1016/j.jpba.2024.116459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Rifampicin, essential for long-term tuberculosis treatment, requires rigorous control of non-therapeutic impurities due to their potential adverse, including mutagenic effects. Reports on control strategies for genotoxic impurities in rifampicin have been limited. This study introduced an analytical method to identify potential genotoxic impurities from the synthesis of raw materials. The structure of the 25-deacetyl-23-acetyl-rifampicin genotoxic impurity was confirmed using nuclear magnetic resonance, high-resolution mass spectrometry (HRMS), and high-performance liquid chromatography (HPLC). An HPLC-HRMS method was established and validated for detecting another genotoxic impurity, 1-amino-4-methylpiperazine, adhering to the International Council on Harmonization guidelines, which include specificity, linearity, detection and quantification limits, accuracy, precision, and robustness. These developments improve the quality control strategy for genotoxic impurities in rifampicin, ensuring product safety.</p></div>\",\"PeriodicalId\":16685,\"journal\":{\"name\":\"Journal of pharmaceutical and biomedical analysis\",\"volume\":\"252 \",\"pages\":\"Article 116459\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0731708524004990/pdfft?md5=e1b6e3bcb42101b01ad5742b878ce1e7&pid=1-s2.0-S0731708524004990-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of pharmaceutical and biomedical analysis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0731708524004990\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmaceutical and biomedical analysis","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0731708524004990","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Identification and quantitative analysis of genotoxic impurities in rifampicin: Development and validation of a targeted LC-MS/MS method for 1-amino-4-methylpiperazine
Rifampicin, essential for long-term tuberculosis treatment, requires rigorous control of non-therapeutic impurities due to their potential adverse, including mutagenic effects. Reports on control strategies for genotoxic impurities in rifampicin have been limited. This study introduced an analytical method to identify potential genotoxic impurities from the synthesis of raw materials. The structure of the 25-deacetyl-23-acetyl-rifampicin genotoxic impurity was confirmed using nuclear magnetic resonance, high-resolution mass spectrometry (HRMS), and high-performance liquid chromatography (HPLC). An HPLC-HRMS method was established and validated for detecting another genotoxic impurity, 1-amino-4-methylpiperazine, adhering to the International Council on Harmonization guidelines, which include specificity, linearity, detection and quantification limits, accuracy, precision, and robustness. These developments improve the quality control strategy for genotoxic impurities in rifampicin, ensuring product safety.
期刊介绍:
This journal is an international medium directed towards the needs of academic, clinical, government and industrial analysis by publishing original research reports and critical reviews on pharmaceutical and biomedical analysis. It covers the interdisciplinary aspects of analysis in the pharmaceutical, biomedical and clinical sciences, including developments in analytical methodology, instrumentation, computation and interpretation. Submissions on novel applications focusing on drug purity and stability studies, pharmacokinetics, therapeutic monitoring, metabolic profiling; drug-related aspects of analytical biochemistry and forensic toxicology; quality assurance in the pharmaceutical industry are also welcome.
Studies from areas of well established and poorly selective methods, such as UV-VIS spectrophotometry (including derivative and multi-wavelength measurements), basic electroanalytical (potentiometric, polarographic and voltammetric) methods, fluorimetry, flow-injection analysis, etc. are accepted for publication in exceptional cases only, if a unique and substantial advantage over presently known systems is demonstrated. The same applies to the assay of simple drug formulations by any kind of methods and the determination of drugs in biological samples based merely on spiked samples. Drug purity/stability studies should contain information on the structure elucidation of the impurities/degradants.