观察路线和外部看守路线

IF 0.9 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Adrian Dumitrescu , Csaba D. Tóth
{"title":"观察路线和外部看守路线","authors":"Adrian Dumitrescu ,&nbsp;Csaba D. Tóth","doi":"10.1016/j.tcs.2024.114818","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce the Observation Route Problem (<span>ORP</span>) defined as follows: Given a set of <em>n</em> pairwise disjoint obstacles (regions) in the plane, find a shortest tour (route) such that an observer walking along this tour can see (observe) each obstacle from some point of the tour. The observer does <em>not</em> need to see the entire boundary of an obstacle. The tour is <em>not</em> allowed to intersect the interior of any region (i.e., the regions are obstacles and therefore out of bounds). The problem exhibits similarity to both the Traveling Salesman Problem with Neighborhoods (<span>TSPN</span>) and the External Watchman Route Problem (<span>EWRP</span>). We distinguish two variants: the range of visibility is either limited to a bounding rectangle, or unlimited. We obtain the following results:</p><p>(I) Given a family of <em>n</em> disjoint convex bodies in the plane, computing a shortest observation route does not admit a <span><math><mo>(</mo><mi>c</mi><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span>-approximation unless <span><math><mi>P</mi><mo>=</mo><mrow><mi>NP</mi></mrow></math></span> for an absolute constant <span><math><mi>c</mi><mo>&gt;</mo><mn>0</mn></math></span>. (This holds for both limited and unlimited vision.)</p><p>(II) Given a family of disjoint convex bodies in the plane, computing a shortest external watchman route is <span><math><mi>NP</mi></math></span>-hard. (This holds for both limited and unlimited vision; and even for families of axis-aligned squares.)</p><p>(III) Given a family of <em>n</em> disjoint fat convex polygons in the plane, an observation tour whose length is at most <span><math><mi>O</mi><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span> times the optimal can be computed in polynomial time. (This holds for limited vision.)</p><p>(IV) For every <span><math><mi>n</mi><mo>≥</mo><mn>5</mn></math></span>, there exists a convex polygon with <em>n</em> sides and all angles obtuse such that its perimeter is <em>not</em> a shortest external watchman route. This refutes a conjecture by Absar and Whitesides (2006).</p></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1019 ","pages":"Article 114818"},"PeriodicalIF":0.9000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0304397524004353/pdfft?md5=8156a2411321e5e2d23ab419a17b5976&pid=1-s2.0-S0304397524004353-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Observation routes and external watchman routes\",\"authors\":\"Adrian Dumitrescu ,&nbsp;Csaba D. Tóth\",\"doi\":\"10.1016/j.tcs.2024.114818\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We introduce the Observation Route Problem (<span>ORP</span>) defined as follows: Given a set of <em>n</em> pairwise disjoint obstacles (regions) in the plane, find a shortest tour (route) such that an observer walking along this tour can see (observe) each obstacle from some point of the tour. The observer does <em>not</em> need to see the entire boundary of an obstacle. The tour is <em>not</em> allowed to intersect the interior of any region (i.e., the regions are obstacles and therefore out of bounds). The problem exhibits similarity to both the Traveling Salesman Problem with Neighborhoods (<span>TSPN</span>) and the External Watchman Route Problem (<span>EWRP</span>). We distinguish two variants: the range of visibility is either limited to a bounding rectangle, or unlimited. We obtain the following results:</p><p>(I) Given a family of <em>n</em> disjoint convex bodies in the plane, computing a shortest observation route does not admit a <span><math><mo>(</mo><mi>c</mi><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span>-approximation unless <span><math><mi>P</mi><mo>=</mo><mrow><mi>NP</mi></mrow></math></span> for an absolute constant <span><math><mi>c</mi><mo>&gt;</mo><mn>0</mn></math></span>. (This holds for both limited and unlimited vision.)</p><p>(II) Given a family of disjoint convex bodies in the plane, computing a shortest external watchman route is <span><math><mi>NP</mi></math></span>-hard. (This holds for both limited and unlimited vision; and even for families of axis-aligned squares.)</p><p>(III) Given a family of <em>n</em> disjoint fat convex polygons in the plane, an observation tour whose length is at most <span><math><mi>O</mi><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span> times the optimal can be computed in polynomial time. (This holds for limited vision.)</p><p>(IV) For every <span><math><mi>n</mi><mo>≥</mo><mn>5</mn></math></span>, there exists a convex polygon with <em>n</em> sides and all angles obtuse such that its perimeter is <em>not</em> a shortest external watchman route. This refutes a conjecture by Absar and Whitesides (2006).</p></div>\",\"PeriodicalId\":49438,\"journal\":{\"name\":\"Theoretical Computer Science\",\"volume\":\"1019 \",\"pages\":\"Article 114818\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0304397524004353/pdfft?md5=8156a2411321e5e2d23ab419a17b5976&pid=1-s2.0-S0304397524004353-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304397524004353\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304397524004353","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了定义如下的观察路线问题(ORP):给定平面上一组 n 对互不相交的障碍物(区域),找出一条最短的路径(路线),使得沿着这条路径行走的观察者可以从路径上的某一点看到(观察到)每个障碍物。观察者不需要看到障碍物的整个边界。巡回路线不允许与任何区域的内部相交(即这些区域都是障碍物,因此不在边界内)。该问题与邻域旅行推销员问题(TSPN)和外部守望者路线问题(ERP)相似。我们将其分为两种变体:可见度范围限制在边界矩形内,或者不受限制。我们得到以下结果:(I) 给定平面上 n 个不相交凸体的族,除非 P=NP 为绝对常量 c>0,否则计算最短观察路线不接受 (clogn)-approximation 。(这对有限视力和无限视力都成立。)(II) 给定平面中的不相交凸体族,计算一条最短的外部观察路线是 NP 难的。 (这对有限视力和无限视力都成立;甚至对轴对齐的正方形族也成立。)(III) 给定平面中的 n 个不相交肥凸多边形族,可以在多项式时间内计算出一条长度最多为最优的 O(logn) 倍的观察路线。(IV)对于每 n≥5,存在一个有 n 边且所有角均为钝角的凸多边形,使得它的周长不是一条最短的外部观察路线。这反驳了 Absar 和 Whitesides(2006 年)的猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Observation routes and external watchman routes

We introduce the Observation Route Problem (ORP) defined as follows: Given a set of n pairwise disjoint obstacles (regions) in the plane, find a shortest tour (route) such that an observer walking along this tour can see (observe) each obstacle from some point of the tour. The observer does not need to see the entire boundary of an obstacle. The tour is not allowed to intersect the interior of any region (i.e., the regions are obstacles and therefore out of bounds). The problem exhibits similarity to both the Traveling Salesman Problem with Neighborhoods (TSPN) and the External Watchman Route Problem (EWRP). We distinguish two variants: the range of visibility is either limited to a bounding rectangle, or unlimited. We obtain the following results:

(I) Given a family of n disjoint convex bodies in the plane, computing a shortest observation route does not admit a (clogn)-approximation unless P=NP for an absolute constant c>0. (This holds for both limited and unlimited vision.)

(II) Given a family of disjoint convex bodies in the plane, computing a shortest external watchman route is NP-hard. (This holds for both limited and unlimited vision; and even for families of axis-aligned squares.)

(III) Given a family of n disjoint fat convex polygons in the plane, an observation tour whose length is at most O(logn) times the optimal can be computed in polynomial time. (This holds for limited vision.)

(IV) For every n5, there exists a convex polygon with n sides and all angles obtuse such that its perimeter is not a shortest external watchman route. This refutes a conjecture by Absar and Whitesides (2006).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Theoretical Computer Science
Theoretical Computer Science 工程技术-计算机:理论方法
CiteScore
2.60
自引率
18.20%
发文量
471
审稿时长
12.6 months
期刊介绍: Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信