Fabian B. Wadsworth , Jérémie Vasseur , Yan Lavallée , Kai-Uwe Hess , Jackie E. Kendrick , Jonathan M. Castro , Daniel Weidendorfer , Shane M. Rooyakkers , Annabelle Foster , Lucy E. Jackson , Ben M. Kennedy , Alexander R.L. Nichols , C. Ian Schipper , Bettina Scheu , Donald B. Dingwell , Tamiko Watson , Georgina Rule , Taylor Witcher , Hugh Tuffen
{"title":"IDDP-1 号钻孔和 Hrafntinnuhryggur(冰岛克拉弗拉)流纹岩岩浆的流变学及其对地热钻探的影响","authors":"Fabian B. Wadsworth , Jérémie Vasseur , Yan Lavallée , Kai-Uwe Hess , Jackie E. Kendrick , Jonathan M. Castro , Daniel Weidendorfer , Shane M. Rooyakkers , Annabelle Foster , Lucy E. Jackson , Ben M. Kennedy , Alexander R.L. Nichols , C. Ian Schipper , Bettina Scheu , Donald B. Dingwell , Tamiko Watson , Georgina Rule , Taylor Witcher , Hugh Tuffen","doi":"10.1016/j.jvolgeores.2024.108159","DOIUrl":null,"url":null,"abstract":"<div><p>Changes in rhyolite melt viscosity during magma decompression and degassing exert a first order control on ascent through the crust and volcanic eruption style. These changes have as yet unknown hazard implications for geothermal drilling in pursuit of particularly hot fluids close to magma storage regions. Here, we exploit the situation at Krafla volcano in which rhyolite has both erupted at Earth's surface and been sampled at shallow storage depths via drilling of the 2009 IDDP-1 and 2008 KJ-39 boreholes. We use differential scanning calorimetry to constrain that the IDDP-1 magma quenched to glass at ∼ 700 K, at a rate of between 7 and 80 K.min<sup>−1</sup>. We measure the equilibrium viscosity of the IDDP-1 rhyolite at temperatures close to the glass transition interval and show that the rhyolite viscosity is consistent with generalized viscosity models assuming a dissolved <span><math><msub><mi>H</mi><mn>2</mn></msub><mi>O</mi></math></span> concentration of <span><math><mn>2.12</mn></math></span> wt%. We couple these results with micro-penetration and concentric cylinder rheometry over a range of potential magma storage temperatures to constrain the response of surficial Krafla rhyolites to stress. The surficial rhyolites at Krafla match the same viscosity model, assuming a lower dissolved <span><math><msub><mi>H</mi><mn>2</mn></msub><mi>O</mi></math></span> concentration of <span><math><mn>0.12</mn></math></span> wt%. Our results show that at a storage temperature of 1123–1193 K, the viscosity of the stored magma is ∼ 3×10<sup>5</sup> Pa.s. At the same temperature, the viscosity following degassing during ascent to the surface rises to ∼ 2×10<sup>9</sup> Pa.s. Finally, we use high-stress compression tests on the Hrafntinnuhryggur surface obsidian to determine the onset of unrelaxed behavior and viscoelastic melt rupture or fragmentation pertinent to understanding the melt response to rapid pressure changes that may be associated with further (near-) magma exploration at Krafla. Taken together, we characterize the relaxation and viscosity of these magmas from source-to-surface.</p></div>","PeriodicalId":54753,"journal":{"name":"Journal of Volcanology and Geothermal Research","volume":"455 ","pages":"Article 108159"},"PeriodicalIF":2.4000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0377027324001513/pdfft?md5=ed5ff3dec547bbf2c2df871403f47f87&pid=1-s2.0-S0377027324001513-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The rheology of rhyolite magma from the IDDP-1 borehole and Hrafntinnuhryggur (Krafla, Iceland) with implications for geothermal drilling\",\"authors\":\"Fabian B. Wadsworth , Jérémie Vasseur , Yan Lavallée , Kai-Uwe Hess , Jackie E. Kendrick , Jonathan M. Castro , Daniel Weidendorfer , Shane M. Rooyakkers , Annabelle Foster , Lucy E. Jackson , Ben M. Kennedy , Alexander R.L. Nichols , C. Ian Schipper , Bettina Scheu , Donald B. Dingwell , Tamiko Watson , Georgina Rule , Taylor Witcher , Hugh Tuffen\",\"doi\":\"10.1016/j.jvolgeores.2024.108159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Changes in rhyolite melt viscosity during magma decompression and degassing exert a first order control on ascent through the crust and volcanic eruption style. These changes have as yet unknown hazard implications for geothermal drilling in pursuit of particularly hot fluids close to magma storage regions. Here, we exploit the situation at Krafla volcano in which rhyolite has both erupted at Earth's surface and been sampled at shallow storage depths via drilling of the 2009 IDDP-1 and 2008 KJ-39 boreholes. We use differential scanning calorimetry to constrain that the IDDP-1 magma quenched to glass at ∼ 700 K, at a rate of between 7 and 80 K.min<sup>−1</sup>. We measure the equilibrium viscosity of the IDDP-1 rhyolite at temperatures close to the glass transition interval and show that the rhyolite viscosity is consistent with generalized viscosity models assuming a dissolved <span><math><msub><mi>H</mi><mn>2</mn></msub><mi>O</mi></math></span> concentration of <span><math><mn>2.12</mn></math></span> wt%. We couple these results with micro-penetration and concentric cylinder rheometry over a range of potential magma storage temperatures to constrain the response of surficial Krafla rhyolites to stress. The surficial rhyolites at Krafla match the same viscosity model, assuming a lower dissolved <span><math><msub><mi>H</mi><mn>2</mn></msub><mi>O</mi></math></span> concentration of <span><math><mn>0.12</mn></math></span> wt%. Our results show that at a storage temperature of 1123–1193 K, the viscosity of the stored magma is ∼ 3×10<sup>5</sup> Pa.s. At the same temperature, the viscosity following degassing during ascent to the surface rises to ∼ 2×10<sup>9</sup> Pa.s. Finally, we use high-stress compression tests on the Hrafntinnuhryggur surface obsidian to determine the onset of unrelaxed behavior and viscoelastic melt rupture or fragmentation pertinent to understanding the melt response to rapid pressure changes that may be associated with further (near-) magma exploration at Krafla. Taken together, we characterize the relaxation and viscosity of these magmas from source-to-surface.</p></div>\",\"PeriodicalId\":54753,\"journal\":{\"name\":\"Journal of Volcanology and Geothermal Research\",\"volume\":\"455 \",\"pages\":\"Article 108159\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0377027324001513/pdfft?md5=ed5ff3dec547bbf2c2df871403f47f87&pid=1-s2.0-S0377027324001513-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Volcanology and Geothermal Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377027324001513\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Volcanology and Geothermal Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377027324001513","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
The rheology of rhyolite magma from the IDDP-1 borehole and Hrafntinnuhryggur (Krafla, Iceland) with implications for geothermal drilling
Changes in rhyolite melt viscosity during magma decompression and degassing exert a first order control on ascent through the crust and volcanic eruption style. These changes have as yet unknown hazard implications for geothermal drilling in pursuit of particularly hot fluids close to magma storage regions. Here, we exploit the situation at Krafla volcano in which rhyolite has both erupted at Earth's surface and been sampled at shallow storage depths via drilling of the 2009 IDDP-1 and 2008 KJ-39 boreholes. We use differential scanning calorimetry to constrain that the IDDP-1 magma quenched to glass at ∼ 700 K, at a rate of between 7 and 80 K.min−1. We measure the equilibrium viscosity of the IDDP-1 rhyolite at temperatures close to the glass transition interval and show that the rhyolite viscosity is consistent with generalized viscosity models assuming a dissolved concentration of wt%. We couple these results with micro-penetration and concentric cylinder rheometry over a range of potential magma storage temperatures to constrain the response of surficial Krafla rhyolites to stress. The surficial rhyolites at Krafla match the same viscosity model, assuming a lower dissolved concentration of wt%. Our results show that at a storage temperature of 1123–1193 K, the viscosity of the stored magma is ∼ 3×105 Pa.s. At the same temperature, the viscosity following degassing during ascent to the surface rises to ∼ 2×109 Pa.s. Finally, we use high-stress compression tests on the Hrafntinnuhryggur surface obsidian to determine the onset of unrelaxed behavior and viscoelastic melt rupture or fragmentation pertinent to understanding the melt response to rapid pressure changes that may be associated with further (near-) magma exploration at Krafla. Taken together, we characterize the relaxation and viscosity of these magmas from source-to-surface.
期刊介绍:
An international research journal with focus on volcanic and geothermal processes and their impact on the environment and society.
Submission of papers covering the following aspects of volcanology and geothermal research are encouraged:
(1) Geological aspects of volcanic systems: volcano stratigraphy, structure and tectonic influence; eruptive history; evolution of volcanic landforms; eruption style and progress; dispersal patterns of lava and ash; analysis of real-time eruption observations.
(2) Geochemical and petrological aspects of volcanic rocks: magma genesis and evolution; crystallization; volatile compositions, solubility, and degassing; volcanic petrography and textural analysis.
(3) Hydrology, geochemistry and measurement of volcanic and hydrothermal fluids: volcanic gas emissions; fumaroles and springs; crater lakes; hydrothermal mineralization.
(4) Geophysical aspects of volcanic systems: physical properties of volcanic rocks and magmas; heat flow studies; volcano seismology, geodesy and remote sensing.
(5) Computational modeling and experimental simulation of magmatic and hydrothermal processes: eruption dynamics; magma transport and storage; plume dynamics and ash dispersal; lava flow dynamics; hydrothermal fluid flow; thermodynamics of aqueous fluids and melts.
(6) Volcano hazard and risk research: hazard zonation methodology, development of forecasting tools; assessment techniques for vulnerability and impact.