{"title":"具有慢速旋转效应的自约束二元紧凑物体建模以及电场梯度对质量半径极限和惯性矩的影响","authors":"S.K. Maurya , Abdelghani Errehymy , Ksh. Newton Singh , M.K. Jasim , Kairat Myrzakulov , Zhanbala Umbetova","doi":"10.1016/j.jheap.2024.09.002","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we investigate the effects of electric field gradients on the secondary component of GW190814 and other binary compact objects. Using general relativistic equations, we derive a model with three conditions and analyze its metric potentials, electric charge, energy density, stresses, and anisotropy parameter. The metric potentials in our analysis match the Schwarzschild exterior at the stellar surface, exhibiting smooth behavior without any central singularity. The electric charge increases from zero at the core to a maximum at the surface, indicating an outward electric force. The energy density, radial and tangential pressures, and anisotropy all demonstrate well-behaved trends. The model is found stable based on the Harrison-Zeldovich-Novikov criteria, adiabatic index, and causality. Investigating the electric charge influence, we find increased charge leads to decreasing pressures and lower central adiabatic index, suggesting the need to optimize charge for long-term stability. The analysis of mass-radius ratio and moment of inertia-mass demonstrates the model's ability to capture the equation of state (EOS) stiffness. Finally, from the <span><math><mi>M</mi><mo>−</mo><mi>R</mi></math></span> and <span><math><mi>I</mi><mo>−</mo><mi>M</mi></math></span> curves we have shown that the mass obtained for the slowly rotating star is higher than the non-rotating case due to the contribution from rotational energy <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mspace></mspace><mi>I</mi><mspace></mspace><msup><mrow><mi>Ω</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> for all values of <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>. It is very surprising to find that the electric field per radial distance i.e. <span><math><mi>E</mi><mo>/</mo><mi>r</mi><mo>=</mo><msqrt><mrow><msub><mrow><mi>E</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msqrt></math></span> is maximum at a particular mass for a chosen radius, specifically for <em>r</em> (km), <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>N</mi><mi>R</mi></mrow></msub><mspace></mspace><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mo>⊙</mo></mrow></msub><mo>)</mo></math></span>, and <span><math><msqrt><mrow><msubsup><mrow><mi>E</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msubsup></mrow></msqrt><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>4</mn></mrow></msup></math></span> (/km<sup>4</sup>). The electric field per unit radius also influences the EOS significantly with overall form <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>=</mo><mi>a</mi><mi>ρ</mi><mo>−</mo><mi>b</mi><msup><mrow><mi>ρ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mi>c</mi></math></span> for all <span><math><mi>a</mi><mo>,</mo><mspace></mspace><mi>b</mi><mo>,</mo><mspace></mspace><mi>c</mi><mo>></mo><mn>0</mn></math></span>. This means that the EOS contains quark matter, dark energy, and exotic matters.</p></div>","PeriodicalId":54265,"journal":{"name":"Journal of High Energy Astrophysics","volume":"44 ","pages":"Pages 45-59"},"PeriodicalIF":10.2000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling self-bound binary compact object with a slow rotation effect and effect of electric field gradient on the mass-radius limit and moment of inertia\",\"authors\":\"S.K. Maurya , Abdelghani Errehymy , Ksh. Newton Singh , M.K. Jasim , Kairat Myrzakulov , Zhanbala Umbetova\",\"doi\":\"10.1016/j.jheap.2024.09.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we investigate the effects of electric field gradients on the secondary component of GW190814 and other binary compact objects. Using general relativistic equations, we derive a model with three conditions and analyze its metric potentials, electric charge, energy density, stresses, and anisotropy parameter. The metric potentials in our analysis match the Schwarzschild exterior at the stellar surface, exhibiting smooth behavior without any central singularity. The electric charge increases from zero at the core to a maximum at the surface, indicating an outward electric force. The energy density, radial and tangential pressures, and anisotropy all demonstrate well-behaved trends. The model is found stable based on the Harrison-Zeldovich-Novikov criteria, adiabatic index, and causality. Investigating the electric charge influence, we find increased charge leads to decreasing pressures and lower central adiabatic index, suggesting the need to optimize charge for long-term stability. The analysis of mass-radius ratio and moment of inertia-mass demonstrates the model's ability to capture the equation of state (EOS) stiffness. Finally, from the <span><math><mi>M</mi><mo>−</mo><mi>R</mi></math></span> and <span><math><mi>I</mi><mo>−</mo><mi>M</mi></math></span> curves we have shown that the mass obtained for the slowly rotating star is higher than the non-rotating case due to the contribution from rotational energy <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mspace></mspace><mi>I</mi><mspace></mspace><msup><mrow><mi>Ω</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> for all values of <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>. It is very surprising to find that the electric field per radial distance i.e. <span><math><mi>E</mi><mo>/</mo><mi>r</mi><mo>=</mo><msqrt><mrow><msub><mrow><mi>E</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msqrt></math></span> is maximum at a particular mass for a chosen radius, specifically for <em>r</em> (km), <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>N</mi><mi>R</mi></mrow></msub><mspace></mspace><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mo>⊙</mo></mrow></msub><mo>)</mo></math></span>, and <span><math><msqrt><mrow><msubsup><mrow><mi>E</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msubsup></mrow></msqrt><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>4</mn></mrow></msup></math></span> (/km<sup>4</sup>). The electric field per unit radius also influences the EOS significantly with overall form <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>=</mo><mi>a</mi><mi>ρ</mi><mo>−</mo><mi>b</mi><msup><mrow><mi>ρ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mi>c</mi></math></span> for all <span><math><mi>a</mi><mo>,</mo><mspace></mspace><mi>b</mi><mo>,</mo><mspace></mspace><mi>c</mi><mo>></mo><mn>0</mn></math></span>. This means that the EOS contains quark matter, dark energy, and exotic matters.</p></div>\",\"PeriodicalId\":54265,\"journal\":{\"name\":\"Journal of High Energy Astrophysics\",\"volume\":\"44 \",\"pages\":\"Pages 45-59\"},\"PeriodicalIF\":10.2000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Energy Astrophysics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S221440482400082X\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221440482400082X","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们研究了电场梯度对 GW190814 和其他双紧凑天体的次级成分的影响。利用广义相对论方程,我们推导了一个具有三个条件的模型,并分析了它的度势、电荷、能量密度、应力和各向异性参数。我们分析的度量势与恒星表面的施瓦兹柴尔德外部相匹配,表现出平滑的行为,没有任何中心奇点。电荷从内核的零增加到表面的最大值,表明存在向外的电场力。能量密度、径向和切向压力以及各向异性都表现出良好的趋势。根据哈里森-泽尔多维奇-诺维科夫标准、绝热指数和因果关系,发现该模型是稳定的。在研究电荷的影响时,我们发现电荷增加会导致压力下降和中心绝热指数降低,这表明需要优化电荷以实现长期稳定。对质量半径比和惯性质量矩的分析表明,该模型能够捕捉状态方程(EOS)的刚度。最后,我们从 M-R 和 I-M 曲线中发现,由于所有 E0 值下的旋转能 12IΩ2 的贡献,缓慢旋转恒星的质量高于非旋转恒星。令人惊讶的是,在选定的半径条件下,单位径向距离的电场(即 E/r=E0)在特定质量处最大,特别是在 r(km)、MNR(M⊙)和 E0max×10-4 (/km4)条件下。单位半径的电场对 EOS 的影响也很大,其总体形式为 Pr=aρ-bρ2-c for all a,b,c>0。这意味着EOS包含夸克物质、暗能量和奇异物质。
Modeling self-bound binary compact object with a slow rotation effect and effect of electric field gradient on the mass-radius limit and moment of inertia
In this paper, we investigate the effects of electric field gradients on the secondary component of GW190814 and other binary compact objects. Using general relativistic equations, we derive a model with three conditions and analyze its metric potentials, electric charge, energy density, stresses, and anisotropy parameter. The metric potentials in our analysis match the Schwarzschild exterior at the stellar surface, exhibiting smooth behavior without any central singularity. The electric charge increases from zero at the core to a maximum at the surface, indicating an outward electric force. The energy density, radial and tangential pressures, and anisotropy all demonstrate well-behaved trends. The model is found stable based on the Harrison-Zeldovich-Novikov criteria, adiabatic index, and causality. Investigating the electric charge influence, we find increased charge leads to decreasing pressures and lower central adiabatic index, suggesting the need to optimize charge for long-term stability. The analysis of mass-radius ratio and moment of inertia-mass demonstrates the model's ability to capture the equation of state (EOS) stiffness. Finally, from the and curves we have shown that the mass obtained for the slowly rotating star is higher than the non-rotating case due to the contribution from rotational energy for all values of . It is very surprising to find that the electric field per radial distance i.e. is maximum at a particular mass for a chosen radius, specifically for r (km), , and (/km4). The electric field per unit radius also influences the EOS significantly with overall form for all . This means that the EOS contains quark matter, dark energy, and exotic matters.
期刊介绍:
The journal welcomes manuscripts on theoretical models, simulations, and observations of highly energetic astrophysical objects both in our Galaxy and beyond. Among those, black holes at all scales, neutron stars, pulsars and their nebula, binaries, novae and supernovae, their remnants, active galaxies, and clusters are just a few examples. The journal will consider research across the whole electromagnetic spectrum, as well as research using various messengers, such as gravitational waves or neutrinos. Effects of high-energy phenomena on cosmology and star-formation, results from dedicated surveys expanding the knowledge of extreme environments, and astrophysical implications of dark matter are also welcomed topics.