{"title":"区分干扰的非线性迭代学习控制","authors":"Leontine Aarnoudse , Alexey Pavlov , Tom Oomen","doi":"10.1016/j.automatica.2024.111902","DOIUrl":null,"url":null,"abstract":"<div><p>Disturbances in iterative learning control (ILC) may be amplified if these vary from one iteration to the next, and reducing this amplification typically reduces the convergence speed. The aim of this paper is to resolve this trade-off and achieve fast convergence, robustness and small converged errors in ILC. A nonlinear learning approach is presented that uses the difference in amplitude characteristics of repeating and varying disturbances to adapt the learning gain. Monotonic convergence of the nonlinear ILC algorithm is established, resulting in a systematic design procedure. Application of the proposed algorithm demonstrates both fast convergence and small errors.</p></div>","PeriodicalId":55413,"journal":{"name":"Automatica","volume":"171 ","pages":"Article 111902"},"PeriodicalIF":4.8000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0005109824003960/pdfft?md5=b42bdfad4b4e5f22cd3879db048cba9e&pid=1-s2.0-S0005109824003960-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Nonlinear iterative learning control for discriminating between disturbances\",\"authors\":\"Leontine Aarnoudse , Alexey Pavlov , Tom Oomen\",\"doi\":\"10.1016/j.automatica.2024.111902\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Disturbances in iterative learning control (ILC) may be amplified if these vary from one iteration to the next, and reducing this amplification typically reduces the convergence speed. The aim of this paper is to resolve this trade-off and achieve fast convergence, robustness and small converged errors in ILC. A nonlinear learning approach is presented that uses the difference in amplitude characteristics of repeating and varying disturbances to adapt the learning gain. Monotonic convergence of the nonlinear ILC algorithm is established, resulting in a systematic design procedure. Application of the proposed algorithm demonstrates both fast convergence and small errors.</p></div>\",\"PeriodicalId\":55413,\"journal\":{\"name\":\"Automatica\",\"volume\":\"171 \",\"pages\":\"Article 111902\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0005109824003960/pdfft?md5=b42bdfad4b4e5f22cd3879db048cba9e&pid=1-s2.0-S0005109824003960-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automatica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0005109824003960\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automatica","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0005109824003960","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Nonlinear iterative learning control for discriminating between disturbances
Disturbances in iterative learning control (ILC) may be amplified if these vary from one iteration to the next, and reducing this amplification typically reduces the convergence speed. The aim of this paper is to resolve this trade-off and achieve fast convergence, robustness and small converged errors in ILC. A nonlinear learning approach is presented that uses the difference in amplitude characteristics of repeating and varying disturbances to adapt the learning gain. Monotonic convergence of the nonlinear ILC algorithm is established, resulting in a systematic design procedure. Application of the proposed algorithm demonstrates both fast convergence and small errors.
期刊介绍:
Automatica is a leading archival publication in the field of systems and control. The field encompasses today a broad set of areas and topics, and is thriving not only within itself but also in terms of its impact on other fields, such as communications, computers, biology, energy and economics. Since its inception in 1963, Automatica has kept abreast with the evolution of the field over the years, and has emerged as a leading publication driving the trends in the field.
After being founded in 1963, Automatica became a journal of the International Federation of Automatic Control (IFAC) in 1969. It features a characteristic blend of theoretical and applied papers of archival, lasting value, reporting cutting edge research results by authors across the globe. It features articles in distinct categories, including regular, brief and survey papers, technical communiqués, correspondence items, as well as reviews on published books of interest to the readership. It occasionally publishes special issues on emerging new topics or established mature topics of interest to a broad audience.
Automatica solicits original high-quality contributions in all the categories listed above, and in all areas of systems and control interpreted in a broad sense and evolving constantly. They may be submitted directly to a subject editor or to the Editor-in-Chief if not sure about the subject area. Editorial procedures in place assure careful, fair, and prompt handling of all submitted articles. Accepted papers appear in the journal in the shortest time feasible given production time constraints.