Al/FRP/Al FML 复合材料 AWJ 加工中的杂化和堆叠顺序对损伤发展的影响

IF 6.1 1区 工程技术 Q1 ENGINEERING, MANUFACTURING
{"title":"Al/FRP/Al FML 复合材料 AWJ 加工中的杂化和堆叠顺序对损伤发展的影响","authors":"","doi":"10.1016/j.jmapro.2024.09.017","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, 5 different Al2024/FRP/Al2024 metal stacked composites were produced and their machinability by abrasive water jet machining (AWJM) method was investigated. Synergistic interaction of these materials offers new and improved properties, but machinability remains an area of research due to widely varying mechanical properties. The effects of different stacking and traverse speed on hole quality in cutting with AWJM were determined. The hole diameter deviation (HDD) ratio, kerf, delamination, hole circularity, and surface morphology were analyzed. Result of the current study showed that the increase in traverse speed caused an increase in the HDD ratio, in the visibility of the cutting starting point, in the deviation of circularity, and in the bore-hole damage formation. In all stacks with CFRP, an average deviation of 5 % at the hole entrance and 4 % at the hole exit occurred at a traverse speed of 1000 mm/min. At 400 and 600 mm/min traverse speeds, an average of 2.8 % deviation occurred at the hole entrance and an average of 2.13 % at the hole exit. This proves that the traverse speed has a significant effect on the hole diameter. In addition, as the traverse speed decreased, it was noticed that the layers separated from each other, causing delamination, and therefore the thickness of the FML increased. Different defects were observed to occur in FRP structures used in FML with SEM analysis. Intralayer defects were more dominant in GFRP laminate, whereas interlayer defects were found to form in CFRP laminate.</p></div>","PeriodicalId":16148,"journal":{"name":"Journal of Manufacturing Processes","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of hybridization and stacking sequence on damage development in AWJ machining of Al/FRP/Al FML composites\",\"authors\":\"\",\"doi\":\"10.1016/j.jmapro.2024.09.017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, 5 different Al2024/FRP/Al2024 metal stacked composites were produced and their machinability by abrasive water jet machining (AWJM) method was investigated. Synergistic interaction of these materials offers new and improved properties, but machinability remains an area of research due to widely varying mechanical properties. The effects of different stacking and traverse speed on hole quality in cutting with AWJM were determined. The hole diameter deviation (HDD) ratio, kerf, delamination, hole circularity, and surface morphology were analyzed. Result of the current study showed that the increase in traverse speed caused an increase in the HDD ratio, in the visibility of the cutting starting point, in the deviation of circularity, and in the bore-hole damage formation. In all stacks with CFRP, an average deviation of 5 % at the hole entrance and 4 % at the hole exit occurred at a traverse speed of 1000 mm/min. At 400 and 600 mm/min traverse speeds, an average of 2.8 % deviation occurred at the hole entrance and an average of 2.13 % at the hole exit. This proves that the traverse speed has a significant effect on the hole diameter. In addition, as the traverse speed decreased, it was noticed that the layers separated from each other, causing delamination, and therefore the thickness of the FML increased. Different defects were observed to occur in FRP structures used in FML with SEM analysis. Intralayer defects were more dominant in GFRP laminate, whereas interlayer defects were found to form in CFRP laminate.</p></div>\",\"PeriodicalId\":16148,\"journal\":{\"name\":\"Journal of Manufacturing Processes\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Manufacturing Processes\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S152661252400923X\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Processes","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S152661252400923X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

本研究生产了 5 种不同的 Al2024/FRP/Al2024 金属叠层复合材料,并采用加砂水射流加工 (AWJM) 方法对其可加工性进行了研究。这些材料的协同作用提供了新的和更好的性能,但由于机械性能差异很大,可加工性仍然是一个研究领域。研究确定了不同的堆叠和移动速度对 AWJM 切削孔质量的影响。分析了孔径偏差(HDD)比、切口、分层、孔圆度和表面形态。研究结果表明,横向速度的增加会导致 HDD 比、切割起点的可见度、圆度偏差和孔洞损伤的形成。在所有使用 CFRP 的堆垛中,当横移速度为 1000 毫米/分钟时,孔入口和孔出口的平均偏差分别为 5%和 4%。在横移速度为 400 毫米/分钟和 600 毫米/分钟时,孔入口处的平均偏差为 2.8%,孔出口处的平均偏差为 2.13%。这证明了横移速度对孔直径有显著影响。此外,随着横移速度的降低,可以发现层与层之间相互分离,造成分层,因此 FML 的厚度增加。通过扫描电子显微镜分析,可以观察到用于 FML 的玻璃钢结构出现了不同的缺陷。层内缺陷在 GFRP 层压板中占主导地位,而层间缺陷则出现在 CFRP 层压板中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of hybridization and stacking sequence on damage development in AWJ machining of Al/FRP/Al FML composites

In this study, 5 different Al2024/FRP/Al2024 metal stacked composites were produced and their machinability by abrasive water jet machining (AWJM) method was investigated. Synergistic interaction of these materials offers new and improved properties, but machinability remains an area of research due to widely varying mechanical properties. The effects of different stacking and traverse speed on hole quality in cutting with AWJM were determined. The hole diameter deviation (HDD) ratio, kerf, delamination, hole circularity, and surface morphology were analyzed. Result of the current study showed that the increase in traverse speed caused an increase in the HDD ratio, in the visibility of the cutting starting point, in the deviation of circularity, and in the bore-hole damage formation. In all stacks with CFRP, an average deviation of 5 % at the hole entrance and 4 % at the hole exit occurred at a traverse speed of 1000 mm/min. At 400 and 600 mm/min traverse speeds, an average of 2.8 % deviation occurred at the hole entrance and an average of 2.13 % at the hole exit. This proves that the traverse speed has a significant effect on the hole diameter. In addition, as the traverse speed decreased, it was noticed that the layers separated from each other, causing delamination, and therefore the thickness of the FML increased. Different defects were observed to occur in FRP structures used in FML with SEM analysis. Intralayer defects were more dominant in GFRP laminate, whereas interlayer defects were found to form in CFRP laminate.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Manufacturing Processes
Journal of Manufacturing Processes ENGINEERING, MANUFACTURING-
CiteScore
10.20
自引率
11.30%
发文量
833
审稿时长
50 days
期刊介绍: The aim of the Journal of Manufacturing Processes (JMP) is to exchange current and future directions of manufacturing processes research, development and implementation, and to publish archival scholarly literature with a view to advancing state-of-the-art manufacturing processes and encouraging innovation for developing new and efficient processes. The journal will also publish from other research communities for rapid communication of innovative new concepts. Special-topic issues on emerging technologies and invited papers will also be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信