{"title":"VAOS:增强多代理合作政策学习的稳定性","authors":"Peng Li, Shaofei Chen, Weilin Yuan, Zhenzhen Hu, Jing Chen","doi":"10.1016/j.knosys.2024.112474","DOIUrl":null,"url":null,"abstract":"<div><p>Multi-agent value decomposition (MAVD) algorithms have made remarkable achievements in applications of multi-agent reinforcement learning (MARL). However, overestimation errors in MAVD algorithms generally lead to unstable phenomena such as severe oscillation and performance degradation in their learning processes. In this work, we propose a method to integrate the advantages of <strong>v</strong>alue <strong>a</strong>veraging and <strong>o</strong>perator <strong>s</strong>witching (VAOS) to enhance MAVD algorithms’ learning stability. In particular, we reduce the variance of the target approximate error by averaging the estimate values of the target network. Meanwhile, we design a operator switching method to fully combine the optimal policy learning ability of the Max operator and the superior stability of the Mellowmax operator. Moreover, we theoretically prove the performance of VAOS in reducing the overestimation error. Exhaustive experimental results show that (1) Comparing to the current popular value decomposition algorithms such as QMIX, VAOS can markedly enhance the learning stability; and (2) The performance of VAOS is superior to other advanced algorithms such as regularized softmax (RES) algorithm in reducing overestimation error.</p></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0950705124011080/pdfft?md5=84148238d7c3495d9a199970061e99a4&pid=1-s2.0-S0950705124011080-main.pdf","citationCount":"0","resultStr":"{\"title\":\"VAOS: Enhancing the stability of cooperative multi-agent policy learning\",\"authors\":\"Peng Li, Shaofei Chen, Weilin Yuan, Zhenzhen Hu, Jing Chen\",\"doi\":\"10.1016/j.knosys.2024.112474\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Multi-agent value decomposition (MAVD) algorithms have made remarkable achievements in applications of multi-agent reinforcement learning (MARL). However, overestimation errors in MAVD algorithms generally lead to unstable phenomena such as severe oscillation and performance degradation in their learning processes. In this work, we propose a method to integrate the advantages of <strong>v</strong>alue <strong>a</strong>veraging and <strong>o</strong>perator <strong>s</strong>witching (VAOS) to enhance MAVD algorithms’ learning stability. In particular, we reduce the variance of the target approximate error by averaging the estimate values of the target network. Meanwhile, we design a operator switching method to fully combine the optimal policy learning ability of the Max operator and the superior stability of the Mellowmax operator. Moreover, we theoretically prove the performance of VAOS in reducing the overestimation error. Exhaustive experimental results show that (1) Comparing to the current popular value decomposition algorithms such as QMIX, VAOS can markedly enhance the learning stability; and (2) The performance of VAOS is superior to other advanced algorithms such as regularized softmax (RES) algorithm in reducing overestimation error.</p></div>\",\"PeriodicalId\":49939,\"journal\":{\"name\":\"Knowledge-Based Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0950705124011080/pdfft?md5=84148238d7c3495d9a199970061e99a4&pid=1-s2.0-S0950705124011080-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Knowledge-Based Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0950705124011080\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950705124011080","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
VAOS: Enhancing the stability of cooperative multi-agent policy learning
Multi-agent value decomposition (MAVD) algorithms have made remarkable achievements in applications of multi-agent reinforcement learning (MARL). However, overestimation errors in MAVD algorithms generally lead to unstable phenomena such as severe oscillation and performance degradation in their learning processes. In this work, we propose a method to integrate the advantages of value averaging and operator switching (VAOS) to enhance MAVD algorithms’ learning stability. In particular, we reduce the variance of the target approximate error by averaging the estimate values of the target network. Meanwhile, we design a operator switching method to fully combine the optimal policy learning ability of the Max operator and the superior stability of the Mellowmax operator. Moreover, we theoretically prove the performance of VAOS in reducing the overestimation error. Exhaustive experimental results show that (1) Comparing to the current popular value decomposition algorithms such as QMIX, VAOS can markedly enhance the learning stability; and (2) The performance of VAOS is superior to other advanced algorithms such as regularized softmax (RES) algorithm in reducing overestimation error.
期刊介绍:
Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.