{"title":"有价域上阿贝尔变种的模型,使用模型理论","authors":"Yatir Halevi","doi":"10.1016/j.aim.2024.109938","DOIUrl":null,"url":null,"abstract":"<div><p>Given an elliptic curve <em>E</em> over a perfect defectless henselian valued field <span><math><mo>(</mo><mi>F</mi><mo>,</mo><mrow><mi>val</mi></mrow><mo>)</mo></math></span> with perfect residue field <span><math><msub><mrow><mtext>k</mtext></mrow><mrow><mi>F</mi></mrow></msub></math></span> and valuation ring <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>F</mi></mrow></msub></math></span>, there exists an integral separated smooth group scheme <span><math><mi>E</mi></math></span> over <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>F</mi></mrow></msub></math></span> with <span><math><mi>E</mi><msub><mrow><mo>×</mo></mrow><mrow><mtext>Spec </mtext><msub><mrow><mi>O</mi></mrow><mrow><mi>F</mi></mrow></msub></mrow></msub><mtext>Spec </mtext><mi>F</mi><mo>≅</mo><mi>E</mi></math></span>. If <span><math><mrow><mi>char</mi></mrow><mo>(</mo><msub><mrow><mtext>k</mtext></mrow><mrow><mi>F</mi></mrow></msub><mo>)</mo><mo>≠</mo><mn>2</mn><mo>,</mo><mn>3</mn></math></span> then one can be found over <span><math><msub><mrow><mi>O</mi></mrow><mrow><msup><mrow><mi>F</mi></mrow><mrow><mi>a</mi><mi>l</mi><mi>g</mi></mrow></msup></mrow></msub></math></span> such that the definable group <span><math><mi>E</mi><mo>(</mo><mi>O</mi><mo>)</mo></math></span> is the maximal generically stable subgroup of <em>E</em>. We also give some partial results on general Abelian varieties over <em>F</em>.</p><p>The construction of <span><math><mi>E</mi></math></span> is by means of generating a birational group law over <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>F</mi></mrow></msub></math></span> by the aid of a generically stable generic type of a definable subgroup of <em>E</em>.</p></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"457 ","pages":"Article 109938"},"PeriodicalIF":1.5000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Models of Abelian varieties over valued fields, using model theory\",\"authors\":\"Yatir Halevi\",\"doi\":\"10.1016/j.aim.2024.109938\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Given an elliptic curve <em>E</em> over a perfect defectless henselian valued field <span><math><mo>(</mo><mi>F</mi><mo>,</mo><mrow><mi>val</mi></mrow><mo>)</mo></math></span> with perfect residue field <span><math><msub><mrow><mtext>k</mtext></mrow><mrow><mi>F</mi></mrow></msub></math></span> and valuation ring <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>F</mi></mrow></msub></math></span>, there exists an integral separated smooth group scheme <span><math><mi>E</mi></math></span> over <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>F</mi></mrow></msub></math></span> with <span><math><mi>E</mi><msub><mrow><mo>×</mo></mrow><mrow><mtext>Spec </mtext><msub><mrow><mi>O</mi></mrow><mrow><mi>F</mi></mrow></msub></mrow></msub><mtext>Spec </mtext><mi>F</mi><mo>≅</mo><mi>E</mi></math></span>. If <span><math><mrow><mi>char</mi></mrow><mo>(</mo><msub><mrow><mtext>k</mtext></mrow><mrow><mi>F</mi></mrow></msub><mo>)</mo><mo>≠</mo><mn>2</mn><mo>,</mo><mn>3</mn></math></span> then one can be found over <span><math><msub><mrow><mi>O</mi></mrow><mrow><msup><mrow><mi>F</mi></mrow><mrow><mi>a</mi><mi>l</mi><mi>g</mi></mrow></msup></mrow></msub></math></span> such that the definable group <span><math><mi>E</mi><mo>(</mo><mi>O</mi><mo>)</mo></math></span> is the maximal generically stable subgroup of <em>E</em>. We also give some partial results on general Abelian varieties over <em>F</em>.</p><p>The construction of <span><math><mi>E</mi></math></span> is by means of generating a birational group law over <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>F</mi></mrow></msub></math></span> by the aid of a generically stable generic type of a definable subgroup of <em>E</em>.</p></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"457 \",\"pages\":\"Article 109938\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870824004535\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824004535","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
给定一条在具有完美残差域 kF 和估值环 OF 的完美无缺陷亨氏有值域 (F,val) 上的椭圆曲线 E,存在一个在 OF 上的积分分离光滑群方案 E,其 E×Spec OFSpec F≅E。如果 char(kF)≠2,3,那么可以在 OFalg 上找到一个可定义群 E(O) 是 E 的最大泛型稳定子群。我们还给出了关于 F 上一般阿贝尔变体的一些部分结果。
Models of Abelian varieties over valued fields, using model theory
Given an elliptic curve E over a perfect defectless henselian valued field with perfect residue field and valuation ring , there exists an integral separated smooth group scheme over with . If then one can be found over such that the definable group is the maximal generically stable subgroup of E. We also give some partial results on general Abelian varieties over F.
The construction of is by means of generating a birational group law over by the aid of a generically stable generic type of a definable subgroup of E.
期刊介绍:
Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.