论卡兹丹-卢兹蒂格多项式中 q 的最小幂

IF 1.5 1区 数学 Q1 MATHEMATICS
Christian Gaetz , Yibo Gao
{"title":"论卡兹丹-卢兹蒂格多项式中 q 的最小幂","authors":"Christian Gaetz ,&nbsp;Yibo Gao","doi":"10.1016/j.aim.2024.109941","DOIUrl":null,"url":null,"abstract":"<div><p>For <em>w</em> in the symmetric group, we provide an exact formula for the smallest positive power <span><math><msup><mrow><mi>q</mi></mrow><mrow><mi>h</mi><mo>(</mo><mi>w</mi><mo>)</mo></mrow></msup></math></span> appearing in the Kazhdan–Lusztig polynomial <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>e</mi><mo>,</mo><mi>w</mi></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo></math></span>. We also provide a tight upper bound on <span><math><mi>h</mi><mo>(</mo><mi>w</mi><mo>)</mo></math></span> in simply-laced types, resolving a conjecture of Billey–Postnikov from 2002.</p></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"457 ","pages":"Article 109941"},"PeriodicalIF":1.5000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the minimal power of q in a Kazhdan–Lusztig polynomial\",\"authors\":\"Christian Gaetz ,&nbsp;Yibo Gao\",\"doi\":\"10.1016/j.aim.2024.109941\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For <em>w</em> in the symmetric group, we provide an exact formula for the smallest positive power <span><math><msup><mrow><mi>q</mi></mrow><mrow><mi>h</mi><mo>(</mo><mi>w</mi><mo>)</mo></mrow></msup></math></span> appearing in the Kazhdan–Lusztig polynomial <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>e</mi><mo>,</mo><mi>w</mi></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo></math></span>. We also provide a tight upper bound on <span><math><mi>h</mi><mo>(</mo><mi>w</mi><mo>)</mo></math></span> in simply-laced types, resolving a conjecture of Billey–Postnikov from 2002.</p></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"457 \",\"pages\":\"Article 109941\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870824004560\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824004560","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于对称群中的 w,我们提供了卡兹丹-卢兹提格多项式 Pe,w(q)中出现的最小正幂次 qh(w) 的精确公式。我们还提供了简并类型中 h(w) 的严密上限,解决了比列-波斯特尼科夫(Billey-Postnikov)在 2002 年提出的一个猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the minimal power of q in a Kazhdan–Lusztig polynomial

For w in the symmetric group, we provide an exact formula for the smallest positive power qh(w) appearing in the Kazhdan–Lusztig polynomial Pe,w(q). We also provide a tight upper bound on h(w) in simply-laced types, resolving a conjecture of Billey–Postnikov from 2002.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信