{"title":"论卡兹丹-卢兹蒂格多项式中 q 的最小幂","authors":"Christian Gaetz , Yibo Gao","doi":"10.1016/j.aim.2024.109941","DOIUrl":null,"url":null,"abstract":"<div><p>For <em>w</em> in the symmetric group, we provide an exact formula for the smallest positive power <span><math><msup><mrow><mi>q</mi></mrow><mrow><mi>h</mi><mo>(</mo><mi>w</mi><mo>)</mo></mrow></msup></math></span> appearing in the Kazhdan–Lusztig polynomial <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>e</mi><mo>,</mo><mi>w</mi></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo></math></span>. We also provide a tight upper bound on <span><math><mi>h</mi><mo>(</mo><mi>w</mi><mo>)</mo></math></span> in simply-laced types, resolving a conjecture of Billey–Postnikov from 2002.</p></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"457 ","pages":"Article 109941"},"PeriodicalIF":1.5000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the minimal power of q in a Kazhdan–Lusztig polynomial\",\"authors\":\"Christian Gaetz , Yibo Gao\",\"doi\":\"10.1016/j.aim.2024.109941\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For <em>w</em> in the symmetric group, we provide an exact formula for the smallest positive power <span><math><msup><mrow><mi>q</mi></mrow><mrow><mi>h</mi><mo>(</mo><mi>w</mi><mo>)</mo></mrow></msup></math></span> appearing in the Kazhdan–Lusztig polynomial <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>e</mi><mo>,</mo><mi>w</mi></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo></math></span>. We also provide a tight upper bound on <span><math><mi>h</mi><mo>(</mo><mi>w</mi><mo>)</mo></math></span> in simply-laced types, resolving a conjecture of Billey–Postnikov from 2002.</p></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"457 \",\"pages\":\"Article 109941\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870824004560\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824004560","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
On the minimal power of q in a Kazhdan–Lusztig polynomial
For w in the symmetric group, we provide an exact formula for the smallest positive power appearing in the Kazhdan–Lusztig polynomial . We also provide a tight upper bound on in simply-laced types, resolving a conjecture of Billey–Postnikov from 2002.
期刊介绍:
Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.