无系统中的同时逼近和返回时间集的乘法厚度

IF 1.5 1区 数学 Q1 MATHEMATICS
Daniel Glasscock
{"title":"无系统中的同时逼近和返回时间集的乘法厚度","authors":"Daniel Glasscock","doi":"10.1016/j.aim.2024.109936","DOIUrl":null,"url":null,"abstract":"<div><p>In the topological dynamical system <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mi>T</mi><mo>)</mo></math></span>, a point <em>x</em> simultaneously approximates a point <em>y</em> if there exists a sequence <span><math><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>, <span><math><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, …of natural numbers for which <span><math><msup><mrow><mi>T</mi></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msup><mi>x</mi></math></span>, <span><math><msup><mrow><mi>T</mi></mrow><mrow><mn>2</mn><msub><mrow><mi>n</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msup><mi>x</mi></math></span>, …, <span><math><msup><mrow><mi>T</mi></mrow><mrow><mi>k</mi><msub><mrow><mi>n</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msup><mi>x</mi></math></span> all tend to <em>y</em>. In 1978, Furstenberg and Weiss showed that every system possesses a point which simultaneously approximates itself (a multiply recurrent point) and deduced refinements of van der Waerden's theorem on arithmetic progressions. In this paper, we study the denseness of the set of points that are simultaneously approximated by a given point. We show that in a minimal nilsystem, all points simultaneously approximate a <em>δ</em>-dense set of points under a necessarily restricted set of powers of <em>T</em>. We tie this theorem to the multiplicative combinatorial properties of return-time sets, showing that all nil-Bohr sets and typical return-time sets in a minimal system are multiplicatively thick in a coset of a multiplicative subsemigroup of the natural numbers. This yields an inhomogeneous multiple recurrence result that generalizes Furstenberg and Weiss' theorem and leads to new enhancements of van der Waerden's theorem. This work relies crucially on continuity in the prolongation relation (the closure of the orbit-closure relation) developed by Auslander, Akin, and Glasner; the theory of rational points and polynomials on nilmanifolds developed by Leibman, Green, and Tao; and the machinery of topological characteristic factors developed recently by Glasner, Huang, Shao, Weiss, and Ye.</p></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"457 ","pages":"Article 109936"},"PeriodicalIF":1.5000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simultaneous approximation in nilsystems and the multiplicative thickness of return-time sets\",\"authors\":\"Daniel Glasscock\",\"doi\":\"10.1016/j.aim.2024.109936\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the topological dynamical system <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mi>T</mi><mo>)</mo></math></span>, a point <em>x</em> simultaneously approximates a point <em>y</em> if there exists a sequence <span><math><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>, <span><math><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, …of natural numbers for which <span><math><msup><mrow><mi>T</mi></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msup><mi>x</mi></math></span>, <span><math><msup><mrow><mi>T</mi></mrow><mrow><mn>2</mn><msub><mrow><mi>n</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msup><mi>x</mi></math></span>, …, <span><math><msup><mrow><mi>T</mi></mrow><mrow><mi>k</mi><msub><mrow><mi>n</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msup><mi>x</mi></math></span> all tend to <em>y</em>. In 1978, Furstenberg and Weiss showed that every system possesses a point which simultaneously approximates itself (a multiply recurrent point) and deduced refinements of van der Waerden's theorem on arithmetic progressions. In this paper, we study the denseness of the set of points that are simultaneously approximated by a given point. We show that in a minimal nilsystem, all points simultaneously approximate a <em>δ</em>-dense set of points under a necessarily restricted set of powers of <em>T</em>. We tie this theorem to the multiplicative combinatorial properties of return-time sets, showing that all nil-Bohr sets and typical return-time sets in a minimal system are multiplicatively thick in a coset of a multiplicative subsemigroup of the natural numbers. This yields an inhomogeneous multiple recurrence result that generalizes Furstenberg and Weiss' theorem and leads to new enhancements of van der Waerden's theorem. This work relies crucially on continuity in the prolongation relation (the closure of the orbit-closure relation) developed by Auslander, Akin, and Glasner; the theory of rational points and polynomials on nilmanifolds developed by Leibman, Green, and Tao; and the machinery of topological characteristic factors developed recently by Glasner, Huang, Shao, Weiss, and Ye.</p></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"457 \",\"pages\":\"Article 109936\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870824004511\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824004511","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在拓扑动力系统(X,T)中,如果存在一个自然数序列 n1、n2、......,其中 Tnix、T2nix、......、Tknix 都趋向于 y,则点 x 同时逼近点 y。1978 年,弗斯滕伯格和魏斯证明了每个系统都有一个同时逼近自身的点(多重复点),并推导出了范德瓦登算术级数定理的细化。在本文中,我们研究了同时被给定点逼近的点集的密集性。我们证明,在最小无系统中,所有点都同时近似于 T 的幂的必然限制集下的δ密集点集。我们将这一定理与返回时间集的乘法组合性质联系起来,证明最小系统中的所有无-玻尔集和典型返回时间集在自然数的乘法子半群的余集中都是乘法密集的。这就产生了一个非均质多重递推结果,它概括了弗斯滕伯格和魏斯的定理,并带来了范德瓦登定理的新提升。这项工作主要依赖于奥斯兰德、阿金和格拉斯纳提出的延长关系(轨道闭合关系的闭合)中的连续性;莱布曼、格林和陶提出的有理点和无穷多项式理论;以及格拉斯纳、黄、邵、魏斯和叶最近提出的拓扑特征因子机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simultaneous approximation in nilsystems and the multiplicative thickness of return-time sets

In the topological dynamical system (X,T), a point x simultaneously approximates a point y if there exists a sequence n1, n2, …of natural numbers for which Tnix, T2nix, …, Tknix all tend to y. In 1978, Furstenberg and Weiss showed that every system possesses a point which simultaneously approximates itself (a multiply recurrent point) and deduced refinements of van der Waerden's theorem on arithmetic progressions. In this paper, we study the denseness of the set of points that are simultaneously approximated by a given point. We show that in a minimal nilsystem, all points simultaneously approximate a δ-dense set of points under a necessarily restricted set of powers of T. We tie this theorem to the multiplicative combinatorial properties of return-time sets, showing that all nil-Bohr sets and typical return-time sets in a minimal system are multiplicatively thick in a coset of a multiplicative subsemigroup of the natural numbers. This yields an inhomogeneous multiple recurrence result that generalizes Furstenberg and Weiss' theorem and leads to new enhancements of van der Waerden's theorem. This work relies crucially on continuity in the prolongation relation (the closure of the orbit-closure relation) developed by Auslander, Akin, and Glasner; the theory of rational points and polynomials on nilmanifolds developed by Leibman, Green, and Tao; and the machinery of topological characteristic factors developed recently by Glasner, Huang, Shao, Weiss, and Ye.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信