{"title":"无系统中的同时逼近和返回时间集的乘法厚度","authors":"Daniel Glasscock","doi":"10.1016/j.aim.2024.109936","DOIUrl":null,"url":null,"abstract":"<div><p>In the topological dynamical system <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mi>T</mi><mo>)</mo></math></span>, a point <em>x</em> simultaneously approximates a point <em>y</em> if there exists a sequence <span><math><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>, <span><math><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, …of natural numbers for which <span><math><msup><mrow><mi>T</mi></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msup><mi>x</mi></math></span>, <span><math><msup><mrow><mi>T</mi></mrow><mrow><mn>2</mn><msub><mrow><mi>n</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msup><mi>x</mi></math></span>, …, <span><math><msup><mrow><mi>T</mi></mrow><mrow><mi>k</mi><msub><mrow><mi>n</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msup><mi>x</mi></math></span> all tend to <em>y</em>. In 1978, Furstenberg and Weiss showed that every system possesses a point which simultaneously approximates itself (a multiply recurrent point) and deduced refinements of van der Waerden's theorem on arithmetic progressions. In this paper, we study the denseness of the set of points that are simultaneously approximated by a given point. We show that in a minimal nilsystem, all points simultaneously approximate a <em>δ</em>-dense set of points under a necessarily restricted set of powers of <em>T</em>. We tie this theorem to the multiplicative combinatorial properties of return-time sets, showing that all nil-Bohr sets and typical return-time sets in a minimal system are multiplicatively thick in a coset of a multiplicative subsemigroup of the natural numbers. This yields an inhomogeneous multiple recurrence result that generalizes Furstenberg and Weiss' theorem and leads to new enhancements of van der Waerden's theorem. This work relies crucially on continuity in the prolongation relation (the closure of the orbit-closure relation) developed by Auslander, Akin, and Glasner; the theory of rational points and polynomials on nilmanifolds developed by Leibman, Green, and Tao; and the machinery of topological characteristic factors developed recently by Glasner, Huang, Shao, Weiss, and Ye.</p></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"457 ","pages":"Article 109936"},"PeriodicalIF":1.5000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simultaneous approximation in nilsystems and the multiplicative thickness of return-time sets\",\"authors\":\"Daniel Glasscock\",\"doi\":\"10.1016/j.aim.2024.109936\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the topological dynamical system <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mi>T</mi><mo>)</mo></math></span>, a point <em>x</em> simultaneously approximates a point <em>y</em> if there exists a sequence <span><math><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>, <span><math><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, …of natural numbers for which <span><math><msup><mrow><mi>T</mi></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msup><mi>x</mi></math></span>, <span><math><msup><mrow><mi>T</mi></mrow><mrow><mn>2</mn><msub><mrow><mi>n</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msup><mi>x</mi></math></span>, …, <span><math><msup><mrow><mi>T</mi></mrow><mrow><mi>k</mi><msub><mrow><mi>n</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msup><mi>x</mi></math></span> all tend to <em>y</em>. In 1978, Furstenberg and Weiss showed that every system possesses a point which simultaneously approximates itself (a multiply recurrent point) and deduced refinements of van der Waerden's theorem on arithmetic progressions. In this paper, we study the denseness of the set of points that are simultaneously approximated by a given point. We show that in a minimal nilsystem, all points simultaneously approximate a <em>δ</em>-dense set of points under a necessarily restricted set of powers of <em>T</em>. We tie this theorem to the multiplicative combinatorial properties of return-time sets, showing that all nil-Bohr sets and typical return-time sets in a minimal system are multiplicatively thick in a coset of a multiplicative subsemigroup of the natural numbers. This yields an inhomogeneous multiple recurrence result that generalizes Furstenberg and Weiss' theorem and leads to new enhancements of van der Waerden's theorem. This work relies crucially on continuity in the prolongation relation (the closure of the orbit-closure relation) developed by Auslander, Akin, and Glasner; the theory of rational points and polynomials on nilmanifolds developed by Leibman, Green, and Tao; and the machinery of topological characteristic factors developed recently by Glasner, Huang, Shao, Weiss, and Ye.</p></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"457 \",\"pages\":\"Article 109936\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870824004511\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824004511","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
在拓扑动力系统(X,T)中,如果存在一个自然数序列 n1、n2、......,其中 Tnix、T2nix、......、Tknix 都趋向于 y,则点 x 同时逼近点 y。1978 年,弗斯滕伯格和魏斯证明了每个系统都有一个同时逼近自身的点(多重复点),并推导出了范德瓦登算术级数定理的细化。在本文中,我们研究了同时被给定点逼近的点集的密集性。我们证明,在最小无系统中,所有点都同时近似于 T 的幂的必然限制集下的δ密集点集。我们将这一定理与返回时间集的乘法组合性质联系起来,证明最小系统中的所有无-玻尔集和典型返回时间集在自然数的乘法子半群的余集中都是乘法密集的。这就产生了一个非均质多重递推结果,它概括了弗斯滕伯格和魏斯的定理,并带来了范德瓦登定理的新提升。这项工作主要依赖于奥斯兰德、阿金和格拉斯纳提出的延长关系(轨道闭合关系的闭合)中的连续性;莱布曼、格林和陶提出的有理点和无穷多项式理论;以及格拉斯纳、黄、邵、魏斯和叶最近提出的拓扑特征因子机制。
Simultaneous approximation in nilsystems and the multiplicative thickness of return-time sets
In the topological dynamical system , a point x simultaneously approximates a point y if there exists a sequence , , …of natural numbers for which , , …, all tend to y. In 1978, Furstenberg and Weiss showed that every system possesses a point which simultaneously approximates itself (a multiply recurrent point) and deduced refinements of van der Waerden's theorem on arithmetic progressions. In this paper, we study the denseness of the set of points that are simultaneously approximated by a given point. We show that in a minimal nilsystem, all points simultaneously approximate a δ-dense set of points under a necessarily restricted set of powers of T. We tie this theorem to the multiplicative combinatorial properties of return-time sets, showing that all nil-Bohr sets and typical return-time sets in a minimal system are multiplicatively thick in a coset of a multiplicative subsemigroup of the natural numbers. This yields an inhomogeneous multiple recurrence result that generalizes Furstenberg and Weiss' theorem and leads to new enhancements of van der Waerden's theorem. This work relies crucially on continuity in the prolongation relation (the closure of the orbit-closure relation) developed by Auslander, Akin, and Glasner; the theory of rational points and polynomials on nilmanifolds developed by Leibman, Green, and Tao; and the machinery of topological characteristic factors developed recently by Glasner, Huang, Shao, Weiss, and Ye.
期刊介绍:
Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.