水弹性波与河道冰盖圆形裂缝的相互作用

IF 3.4 2区 工程技术 Q1 ENGINEERING, MECHANICAL
{"title":"水弹性波与河道冰盖圆形裂缝的相互作用","authors":"","doi":"10.1016/j.jfluidstructs.2024.104173","DOIUrl":null,"url":null,"abstract":"<div><p>Hydroelastic wave interaction with a circular crack of an ice-cover in a channel together with some related problems is considered, based on the linearized velocity potential theory and Kirchhoff plate theory. The domain decomposition method is adopted in the solution procedure. Two sub-domains are divided by the crack, one below the inner ice sheet and the other below the outer ice sheet. By using the Green function of an ice-covered channel, the velocity potential in the outer domain is established from the source distribution formula over an artificial vertical surface extended from the crack. The source distribution is expanded in both vertical and circumferential directions, which allows the velocity potential to be obtained in an explicit form with unknown coefficients. The velocity potential in the inner domain is expanded into a double series. An orthogonal inner product is used to impose continuity conditions on the artificial vertical surface and the edge conditions at the crack. The derived formulation is not just limited to the circular crack problem but can also be readily used in a variety of other problems, including wave diffraction by a surface-piercing vertical cylinder, polynya and circular disc floating on the free surface in a channel. Extensive results are provided for the forces on the inner ice sheet, the transmission and reflection coefficients. In particular, a detailed analysis is made on their behaviours near the natural frequencies of the channel, and the natural frequencies corresponding to the motion of the inner ice sheet.</p></div>","PeriodicalId":54834,"journal":{"name":"Journal of Fluids and Structures","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0889974624001087/pdfft?md5=c75b3dd66e72f381efec5ccca55e8f87&pid=1-s2.0-S0889974624001087-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Hydroelastic wave interaction with a circular crack of an ice-cover in a channel\",\"authors\":\"\",\"doi\":\"10.1016/j.jfluidstructs.2024.104173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Hydroelastic wave interaction with a circular crack of an ice-cover in a channel together with some related problems is considered, based on the linearized velocity potential theory and Kirchhoff plate theory. The domain decomposition method is adopted in the solution procedure. Two sub-domains are divided by the crack, one below the inner ice sheet and the other below the outer ice sheet. By using the Green function of an ice-covered channel, the velocity potential in the outer domain is established from the source distribution formula over an artificial vertical surface extended from the crack. The source distribution is expanded in both vertical and circumferential directions, which allows the velocity potential to be obtained in an explicit form with unknown coefficients. The velocity potential in the inner domain is expanded into a double series. An orthogonal inner product is used to impose continuity conditions on the artificial vertical surface and the edge conditions at the crack. The derived formulation is not just limited to the circular crack problem but can also be readily used in a variety of other problems, including wave diffraction by a surface-piercing vertical cylinder, polynya and circular disc floating on the free surface in a channel. Extensive results are provided for the forces on the inner ice sheet, the transmission and reflection coefficients. In particular, a detailed analysis is made on their behaviours near the natural frequencies of the channel, and the natural frequencies corresponding to the motion of the inner ice sheet.</p></div>\",\"PeriodicalId\":54834,\"journal\":{\"name\":\"Journal of Fluids and Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0889974624001087/pdfft?md5=c75b3dd66e72f381efec5ccca55e8f87&pid=1-s2.0-S0889974624001087-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluids and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0889974624001087\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluids and Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0889974624001087","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

基于线性化速度势理论和基尔霍夫板理论,研究了水弹性波与水道中冰盖圆形裂缝的相互作用以及一些相关问题。求解过程采用了域分解法。通过裂缝划分出两个子域,一个位于内冰层下方,另一个位于外冰层下方。利用冰覆盖通道的格林函数,从裂缝延伸出的人工垂直面上的源分布公式确定外域的速度势能。源分布在垂直和圆周方向上都有扩展,因此可以用未知系数的显式形式获得速度势能。内域中的速度势展开为双序列。使用正交内积对人工垂直表面施加连续性条件,并在裂缝处施加边缘条件。推导出的公式不仅限于圆形裂缝问题,还可用于其他各种问题,包括表面穿透垂直圆柱体、多旋涡和漂浮在通道自由表面上的圆形圆盘的波衍射。文中提供了关于内部冰层受力、透射系数和反射系数的大量结果。特别是,详细分析了它们在通道自然频率附近的行为,以及与内冰片运动相对应的自然频率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hydroelastic wave interaction with a circular crack of an ice-cover in a channel

Hydroelastic wave interaction with a circular crack of an ice-cover in a channel together with some related problems is considered, based on the linearized velocity potential theory and Kirchhoff plate theory. The domain decomposition method is adopted in the solution procedure. Two sub-domains are divided by the crack, one below the inner ice sheet and the other below the outer ice sheet. By using the Green function of an ice-covered channel, the velocity potential in the outer domain is established from the source distribution formula over an artificial vertical surface extended from the crack. The source distribution is expanded in both vertical and circumferential directions, which allows the velocity potential to be obtained in an explicit form with unknown coefficients. The velocity potential in the inner domain is expanded into a double series. An orthogonal inner product is used to impose continuity conditions on the artificial vertical surface and the edge conditions at the crack. The derived formulation is not just limited to the circular crack problem but can also be readily used in a variety of other problems, including wave diffraction by a surface-piercing vertical cylinder, polynya and circular disc floating on the free surface in a channel. Extensive results are provided for the forces on the inner ice sheet, the transmission and reflection coefficients. In particular, a detailed analysis is made on their behaviours near the natural frequencies of the channel, and the natural frequencies corresponding to the motion of the inner ice sheet.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Fluids and Structures
Journal of Fluids and Structures 工程技术-工程:机械
CiteScore
6.90
自引率
8.30%
发文量
173
审稿时长
65 days
期刊介绍: The Journal of Fluids and Structures serves as a focal point and a forum for the exchange of ideas, for the many kinds of specialists and practitioners concerned with fluid–structure interactions and the dynamics of systems related thereto, in any field. One of its aims is to foster the cross–fertilization of ideas, methods and techniques in the various disciplines involved. The journal publishes papers that present original and significant contributions on all aspects of the mechanical interactions between fluids and solids, regardless of scale.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信