基于互易变换的联合深度学习和广泛学习,用于异质图像的变化检测

IF 7.5 1区 地球科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Bin Yang;Zhulian Wang;Xinxin Liu;Leyuan Fang;Licheng Liu
{"title":"基于互易变换的联合深度学习和广泛学习,用于异质图像的变化检测","authors":"Bin Yang;Zhulian Wang;Xinxin Liu;Leyuan Fang;Licheng Liu","doi":"10.1109/TGRS.2024.3456548","DOIUrl":null,"url":null,"abstract":"With the rapid development of remote sensing imaging technology, change detection (CD) with heterogeneous images has become a hot topic in the community. Given the distinct physical properties of heterogeneous images, it is difficult for direct extraction of change information. Some models that transform heterogeneous images into a mutual feature domain can be beneficial. However, the transformation may be influenced by the changed areas that are not the discrepancy of the domains, which further decreases the accuracy of CD. To solve the problem, we propose a reciprocal transformation-based joint deep and broad learning (RTDBL) model for CD with heterogeneous images. In the RTDBL model, in order to rapidly extract features, a deep feature extraction (DFE) module is designed without the need for training. In addition, for directly highlighting change information and eliminating the influence of changed areas, a reciprocal heterogeneous nodes transformation (RHNT) module is designed to construct regression functions for achieving reciprocal transformation. Subsequently, to achieve cross-spatial information interaction, a structural nodes extraction (SNE) module is proposed for obtaining structural nodes. For effectively utilizing aforementioned information and exploring the connections of heterogeneous nodes, a heterogeneous dual broad learning (HDBL) is developed to predict the change map. According to the best of our knowledge, this is the first attempt that joints deep learning and broad learning for CD with heterogeneous images. The efficacy of the proposed RTDBL is demonstrated through experimental analysis on four widely used datasets, in comparison with ten state-of-the-art models.","PeriodicalId":13213,"journal":{"name":"IEEE Transactions on Geoscience and Remote Sensing","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reciprocal Transformation-Based Joint Deep and Broad Learning for Change Detection With Heterogeneous Images\",\"authors\":\"Bin Yang;Zhulian Wang;Xinxin Liu;Leyuan Fang;Licheng Liu\",\"doi\":\"10.1109/TGRS.2024.3456548\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid development of remote sensing imaging technology, change detection (CD) with heterogeneous images has become a hot topic in the community. Given the distinct physical properties of heterogeneous images, it is difficult for direct extraction of change information. Some models that transform heterogeneous images into a mutual feature domain can be beneficial. However, the transformation may be influenced by the changed areas that are not the discrepancy of the domains, which further decreases the accuracy of CD. To solve the problem, we propose a reciprocal transformation-based joint deep and broad learning (RTDBL) model for CD with heterogeneous images. In the RTDBL model, in order to rapidly extract features, a deep feature extraction (DFE) module is designed without the need for training. In addition, for directly highlighting change information and eliminating the influence of changed areas, a reciprocal heterogeneous nodes transformation (RHNT) module is designed to construct regression functions for achieving reciprocal transformation. Subsequently, to achieve cross-spatial information interaction, a structural nodes extraction (SNE) module is proposed for obtaining structural nodes. For effectively utilizing aforementioned information and exploring the connections of heterogeneous nodes, a heterogeneous dual broad learning (HDBL) is developed to predict the change map. According to the best of our knowledge, this is the first attempt that joints deep learning and broad learning for CD with heterogeneous images. The efficacy of the proposed RTDBL is demonstrated through experimental analysis on four widely used datasets, in comparison with ten state-of-the-art models.\",\"PeriodicalId\":13213,\"journal\":{\"name\":\"IEEE Transactions on Geoscience and Remote Sensing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Geoscience and Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10669624/\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Geoscience and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10669624/","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

随着遥感成像技术的飞速发展,异质图像的变化检测(CD)已成为社会各界的热门话题。由于异质图像具有不同的物理特性,因此很难直接提取变化信息。一些将异质图像转换为互为特征域的模型可能是有益的。然而,变换可能会受到变化区域的影响,而这些变化区域并非互异域,这进一步降低了互异域提取的准确性。为了解决这个问题,我们提出了一种基于互变的联合深度和广度学习(RTDBL)模型,用于异构图像的 CD。在 RTDBL 模型中,为了快速提取特征,设计了一个无需训练的深度特征提取(DFE)模块。此外,为了直接突出变化信息并消除变化区域的影响,还设计了异质节点互变(RHNT)模块,用于构建回归函数以实现互变。随后,为实现跨空间信息交互,提出了结构节点提取(SNE)模块,用于获取结构节点。为了有效利用上述信息并探索异构节点的联系,我们开发了异构双广义学习(HDBL)来预测变化图。据我们所知,这是首次尝试将深度学习和广义学习结合起来,用于异构图像的 CD。通过在四个广泛使用的数据集上进行实验分析,并与十个最先进的模型进行比较,证明了所提出的 RTDBL 的功效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reciprocal Transformation-Based Joint Deep and Broad Learning for Change Detection With Heterogeneous Images
With the rapid development of remote sensing imaging technology, change detection (CD) with heterogeneous images has become a hot topic in the community. Given the distinct physical properties of heterogeneous images, it is difficult for direct extraction of change information. Some models that transform heterogeneous images into a mutual feature domain can be beneficial. However, the transformation may be influenced by the changed areas that are not the discrepancy of the domains, which further decreases the accuracy of CD. To solve the problem, we propose a reciprocal transformation-based joint deep and broad learning (RTDBL) model for CD with heterogeneous images. In the RTDBL model, in order to rapidly extract features, a deep feature extraction (DFE) module is designed without the need for training. In addition, for directly highlighting change information and eliminating the influence of changed areas, a reciprocal heterogeneous nodes transformation (RHNT) module is designed to construct regression functions for achieving reciprocal transformation. Subsequently, to achieve cross-spatial information interaction, a structural nodes extraction (SNE) module is proposed for obtaining structural nodes. For effectively utilizing aforementioned information and exploring the connections of heterogeneous nodes, a heterogeneous dual broad learning (HDBL) is developed to predict the change map. According to the best of our knowledge, this is the first attempt that joints deep learning and broad learning for CD with heterogeneous images. The efficacy of the proposed RTDBL is demonstrated through experimental analysis on four widely used datasets, in comparison with ten state-of-the-art models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Geoscience and Remote Sensing
IEEE Transactions on Geoscience and Remote Sensing 工程技术-地球化学与地球物理
CiteScore
11.50
自引率
28.00%
发文量
1912
审稿时长
4.0 months
期刊介绍: IEEE Transactions on Geoscience and Remote Sensing (TGRS) is a monthly publication that focuses on the theory, concepts, and techniques of science and engineering as applied to sensing the land, oceans, atmosphere, and space; and the processing, interpretation, and dissemination of this information.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信