制作恒温相变介质咖啡杯:结晶焓的实际应用

IF 2.5 3区 教育学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Vera Alenicheva, Caitlin McEntee and Michael K. Bellamy*, 
{"title":"制作恒温相变介质咖啡杯:结晶焓的实际应用","authors":"Vera Alenicheva,&nbsp;Caitlin McEntee and Michael K. Bellamy*,&nbsp;","doi":"10.1021/acs.jchemed.4c0033710.1021/acs.jchemed.4c00337","DOIUrl":null,"url":null,"abstract":"<p >The experiment presented relates the concept of enthalpy of crystallization to the real-world application of temperature-regulated coffee mugs. Students first measure the enthalpy of crystallization of a phase change material (PCM). Observing a temperature increase for a “freezing” process emphasizes that the formation of bonds is an exothermic process. In the case of a phase change, these bonds are intermolecular. In addition, knowing the value of the enthalpy of crystallization allows students to calculate the amount of heat that can be absorbed or released per gram of PCM during the phase change. Then, students insert PCM into vacuum mugs to make constant-temperature coffee mugs that mimic those that are commercially available. Students place hot water (coffee) into their user made PCM mugs and measure the temperature versus time. The PCM absorbs heat quickly and lowers the temperature of coffee to the melting point of the PCM, which is near the desired drinking temperature of the coffee. As the PCM resolidifies, heat is released and the temperature of their coffee is held near the melting point of the PCM. Students compare the performance of their PCM coffee mugs with commercially available mugs. If desired, the procedure can be modified to be a guided inquiry-based experiment. The experiment is designed to be used in either a first-semester freshman chemistry course at a university or a high school chemistry course. The experiment is inexpensive to implement since PCM can be reused. No chemical waste is generated, and student engagement has been positive. The content of the lab corresponds to the thermochemistry content of most textbooks.</p>","PeriodicalId":43,"journal":{"name":"Journal of Chemical Education","volume":"101 9","pages":"3912–3916 3912–3916"},"PeriodicalIF":2.5000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.jchemed.4c00337","citationCount":"0","resultStr":"{\"title\":\"Making a Constant Temperature Phase-Change Medium Coffee Mug: A Real-World Application of Enthalpy of Crystallization\",\"authors\":\"Vera Alenicheva,&nbsp;Caitlin McEntee and Michael K. Bellamy*,&nbsp;\",\"doi\":\"10.1021/acs.jchemed.4c0033710.1021/acs.jchemed.4c00337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The experiment presented relates the concept of enthalpy of crystallization to the real-world application of temperature-regulated coffee mugs. Students first measure the enthalpy of crystallization of a phase change material (PCM). Observing a temperature increase for a “freezing” process emphasizes that the formation of bonds is an exothermic process. In the case of a phase change, these bonds are intermolecular. In addition, knowing the value of the enthalpy of crystallization allows students to calculate the amount of heat that can be absorbed or released per gram of PCM during the phase change. Then, students insert PCM into vacuum mugs to make constant-temperature coffee mugs that mimic those that are commercially available. Students place hot water (coffee) into their user made PCM mugs and measure the temperature versus time. The PCM absorbs heat quickly and lowers the temperature of coffee to the melting point of the PCM, which is near the desired drinking temperature of the coffee. As the PCM resolidifies, heat is released and the temperature of their coffee is held near the melting point of the PCM. Students compare the performance of their PCM coffee mugs with commercially available mugs. If desired, the procedure can be modified to be a guided inquiry-based experiment. The experiment is designed to be used in either a first-semester freshman chemistry course at a university or a high school chemistry course. The experiment is inexpensive to implement since PCM can be reused. No chemical waste is generated, and student engagement has been positive. The content of the lab corresponds to the thermochemistry content of most textbooks.</p>\",\"PeriodicalId\":43,\"journal\":{\"name\":\"Journal of Chemical Education\",\"volume\":\"101 9\",\"pages\":\"3912–3916 3912–3916\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acs.jchemed.4c00337\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Education\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jchemed.4c00337\",\"RegionNum\":3,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Education","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jchemed.4c00337","RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本实验将结晶焓的概念与温度调节咖啡杯的实际应用联系起来。学生首先测量相变材料 (PCM) 的结晶焓。观察 "冻结 "过程的温度升高,可以强调键的形成是一个放热过程。在相变情况下,这些键是分子间的。此外,通过了解结晶焓值,学生可以计算出每克 PCM 在相变过程中可吸收或释放的热量。然后,学生将 PCM 放入真空杯中,模仿市面上的咖啡杯制作恒温咖啡杯。学生将热水(咖啡)放入自己制作的 PCM 杯中,测量温度与时间的关系。PCM 快速吸热,将咖啡温度降低到 PCM 的熔点,即接近咖啡的理想饮用温度。随着 PCM 的分解,热量释放出来,咖啡的温度保持在 PCM 熔点附近。学生将 PCM 咖啡杯的性能与市售咖啡杯进行比较。如果需要,还可以将该程序修改为引导式探究实验。该实验可用于大学一年级化学课程的第一学期或高中化学课程。由于 PCM 可以重复使用,因此该实验的实施成本很低。不会产生化学废物,学生的参与度也很高。实验内容与大多数教科书中的热化学内容一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Making a Constant Temperature Phase-Change Medium Coffee Mug: A Real-World Application of Enthalpy of Crystallization

Making a Constant Temperature Phase-Change Medium Coffee Mug: A Real-World Application of Enthalpy of Crystallization

The experiment presented relates the concept of enthalpy of crystallization to the real-world application of temperature-regulated coffee mugs. Students first measure the enthalpy of crystallization of a phase change material (PCM). Observing a temperature increase for a “freezing” process emphasizes that the formation of bonds is an exothermic process. In the case of a phase change, these bonds are intermolecular. In addition, knowing the value of the enthalpy of crystallization allows students to calculate the amount of heat that can be absorbed or released per gram of PCM during the phase change. Then, students insert PCM into vacuum mugs to make constant-temperature coffee mugs that mimic those that are commercially available. Students place hot water (coffee) into their user made PCM mugs and measure the temperature versus time. The PCM absorbs heat quickly and lowers the temperature of coffee to the melting point of the PCM, which is near the desired drinking temperature of the coffee. As the PCM resolidifies, heat is released and the temperature of their coffee is held near the melting point of the PCM. Students compare the performance of their PCM coffee mugs with commercially available mugs. If desired, the procedure can be modified to be a guided inquiry-based experiment. The experiment is designed to be used in either a first-semester freshman chemistry course at a university or a high school chemistry course. The experiment is inexpensive to implement since PCM can be reused. No chemical waste is generated, and student engagement has been positive. The content of the lab corresponds to the thermochemistry content of most textbooks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Chemical Education
Journal of Chemical Education 化学-化学综合
CiteScore
5.60
自引率
50.00%
发文量
465
审稿时长
6.5 months
期刊介绍: The Journal of Chemical Education is the official journal of the Division of Chemical Education of the American Chemical Society, co-published with the American Chemical Society Publications Division. Launched in 1924, the Journal of Chemical Education is the world’s premier chemical education journal. The Journal publishes peer-reviewed articles and related information as a resource to those in the field of chemical education and to those institutions that serve them. JCE typically addresses chemical content, activities, laboratory experiments, instructional methods, and pedagogies. The Journal serves as a means of communication among people across the world who are interested in the teaching and learning of chemistry. This includes instructors of chemistry from middle school through graduate school, professional staff who support these teaching activities, as well as some scientists in commerce, industry, and government.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信