{"title":"研究层状 T′镍酸盐 R4Ni3O8(R=镧、镨或钕)中电荷/自旋条纹绝缘体向相关金属相交叉的原因","authors":"Dibyata Rout, Sanchayeta Ranajit Mudi, Suman Karmakar, Rajeev Rawat, Surjeet Singh","doi":"10.1103/physrevb.110.094412","DOIUrl":null,"url":null,"abstract":"The infinite layered (<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mi>T</mi><mo>′</mo></msup></math>) nickelates have recently garnered significant attention due to the discovery of superconductivity in hole-doped <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>R</mi><mtext>NiO</mtext></mrow><mn>2</mn></msub></math> (<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>R</mi><mo>=</mo><mi mathvariant=\"normal\">La</mi><mo>,</mo><mi mathvariant=\"normal\">Pr</mi><mo>,</mo><mtext>or</mtext><mi mathvariant=\"normal\">Nd</mi></mrow></math>), which is the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>n</mi><mo>=</mo><mi>∞</mi></mrow></math> member of the series <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi>R</mi><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><msub><mi>Ni</mi><mi>n</mi></msub><msub><mi mathvariant=\"normal\">O</mi><mrow><mn>2</mn><mi>n</mi><mo>+</mo><mn>2</mn></mrow></msub></mrow></math>. Here, we investigate the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>n</mi><mo>=</mo><mn>3</mn></mrow></math> member, namely <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi>R</mi><mn>4</mn></msub><msub><mi>Ni</mi><mn>3</mn></msub><msub><mi mathvariant=\"normal\">O</mi><mn>8</mn></msub></mrow></math> (<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>R</mi><mo>=</mo><mi mathvariant=\"normal\">La</mi><mo>,</mo><mi mathvariant=\"normal\">Pr</mi><mo>,</mo><mtext>or</mtext><mi mathvariant=\"normal\">Nd</mi></mrow></math>), of this family. The compound <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi mathvariant=\"normal\">La</mi><mn>4</mn></msub><msub><mi mathvariant=\"normal\">Ni</mi><mn>3</mn></msub><msub><mi mathvariant=\"normal\">O</mi><mn>8</mn></msub></math> exhibits simultaneous charge/spin-stripe ordering at <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup><mi>T</mi><mi>N</mi><mo>*</mo></msubsup></math> = 105 K, which occurs concomitantly with the onset of the metal-to-insulator (MIT) transition below <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup><mi>T</mi><mi>N</mi><mo>*</mo></msubsup></math>. We investigate the conspicuous absence of this transition in the Pr and Nd analogs of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi mathvariant=\"normal\">La</mi><mn>4</mn></msub><msub><mi mathvariant=\"normal\">Ni</mi><mn>3</mn></msub><msub><mi mathvariant=\"normal\">O</mi><mn>8</mn></msub></math>. For this purpose, we synthesized solid solutions of the form <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mo>(</mo><mi mathvariant=\"normal\">La</mi><mo>,</mo><msub><mrow><mi>Pr</mi><mo>)</mo></mrow><mn>4</mn></msub><msub><mi>Ni</mi><mn>3</mn></msub><msub><mi mathvariant=\"normal\">O</mi><mn>8</mn></msub></mrow></math> and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mo>(</mo><mi mathvariant=\"normal\">La</mi><mo>,</mo><msub><mrow><mi>Nd</mi><mo>)</mo></mrow><mn>4</mn></msub><msub><mi>Ni</mi><mn>3</mn></msub><msub><mi mathvariant=\"normal\">O</mi><mn>8</mn></msub></mrow></math>, and examined the behavior of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup><mi>T</mi><mi>N</mi><mo>*</mo></msubsup></math> as a function of the average <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>R</mi></math>-site ionic radius (<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>r</mi><mover accent=\"true\"><mi>R</mi><mo>¯</mo></mover></msub></math>). We show that after an initial quasilinear decrease with decreasing <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>r</mi><mover accent=\"true\"><mi>R</mi><mo>¯</mo></mover></msub><mo>,</mo><mo> </mo><msubsup><mi>T</mi><mi>N</mi><mo>*</mo></msubsup></math> suddenly vanishes in the narrow range <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>1.134</mn><mo>≤</mo><mspace width=\"0.16em\"></mspace><msub><mi>r</mi><mover accent=\"true\"><mi>R</mi><mo>¯</mo></mover></msub><mspace width=\"0.16em\"></mspace><mo>≤</mo><mspace width=\"0.16em\"></mspace><mn>1.143</mn><mspace width=\"4pt\"></mspace><mtext>Å</mtext></mrow></math>. In the same range, we observed the emergence of a weak anomaly in the specific heat, whose onset temperature (<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mi>T</mi><mo>*</mo></msup></math>) increases as <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>r</mi><mover accent=\"true\"><mi>R</mi><mo>¯</mo></mover></msub></math> further decreases reaching a maximum of 13 K for <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi mathvariant=\"normal\">Nd</mi><mn>4</mn></msub><msub><mi mathvariant=\"normal\">Ni</mi><mn>3</mn></msub><msub><mi mathvariant=\"normal\">O</mi><mn>8</mn></msub></math>. We suggest, therefore, that the sudden vanishing of charge/spin-stripe/MIT ordering upon decreasing <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>r</mi><mover accent=\"true\"><mi>R</mi><mo>¯</mo></mover></msub></math> is related to the appearance of this new electronic phase for <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi>r</mi><mover accent=\"true\"><mi>R</mi><mo>¯</mo></mover></msub><mo><</mo><msub><mi>r</mi><mi>c</mi></msub></mrow></math>. The nature of this phase or the weak anomaly and the point <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi>r</mi><mover accent=\"true\"><mi>R</mi><mo>¯</mo></mover></msub><mo>≈</mo><msub><mi>r</mi><mi>c</mi></msub></mrow></math>, where <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup><mi>T</mi><mi>N</mi><mo>*</mo></msubsup></math> vanishes and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mi>T</mi><mo>*</mo></msup></math> appears, should be investigated further. In this regard, <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi mathvariant=\"normal\">Pr</mi><mn>4</mn></msub><msub><mi mathvariant=\"normal\">Ni</mi><mn>3</mn></msub><msub><mi mathvariant=\"normal\">O</mi><mn>8</mn></msub></math> and Pr-rich samples should be useful due to the weak magnetization response associated with the Pr sublattice, as shown here.","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating the cause of crossover from charge/spin-stripe insulator to correlated metallic phase in layered T′ nickelates R4Ni3O8 (R=La,Pr,orNd)\",\"authors\":\"Dibyata Rout, Sanchayeta Ranajit Mudi, Suman Karmakar, Rajeev Rawat, Surjeet Singh\",\"doi\":\"10.1103/physrevb.110.094412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The infinite layered (<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mi>T</mi><mo>′</mo></msup></math>) nickelates have recently garnered significant attention due to the discovery of superconductivity in hole-doped <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi>R</mi><mtext>NiO</mtext></mrow><mn>2</mn></msub></math> (<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>R</mi><mo>=</mo><mi mathvariant=\\\"normal\\\">La</mi><mo>,</mo><mi mathvariant=\\\"normal\\\">Pr</mi><mo>,</mo><mtext>or</mtext><mi mathvariant=\\\"normal\\\">Nd</mi></mrow></math>), which is the <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>n</mi><mo>=</mo><mi>∞</mi></mrow></math> member of the series <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><msub><mi>R</mi><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><msub><mi>Ni</mi><mi>n</mi></msub><msub><mi mathvariant=\\\"normal\\\">O</mi><mrow><mn>2</mn><mi>n</mi><mo>+</mo><mn>2</mn></mrow></msub></mrow></math>. Here, we investigate the <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>n</mi><mo>=</mo><mn>3</mn></mrow></math> member, namely <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><msub><mi>R</mi><mn>4</mn></msub><msub><mi>Ni</mi><mn>3</mn></msub><msub><mi mathvariant=\\\"normal\\\">O</mi><mn>8</mn></msub></mrow></math> (<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>R</mi><mo>=</mo><mi mathvariant=\\\"normal\\\">La</mi><mo>,</mo><mi mathvariant=\\\"normal\\\">Pr</mi><mo>,</mo><mtext>or</mtext><mi mathvariant=\\\"normal\\\">Nd</mi></mrow></math>), of this family. The compound <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi mathvariant=\\\"normal\\\">La</mi><mn>4</mn></msub><msub><mi mathvariant=\\\"normal\\\">Ni</mi><mn>3</mn></msub><msub><mi mathvariant=\\\"normal\\\">O</mi><mn>8</mn></msub></math> exhibits simultaneous charge/spin-stripe ordering at <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msubsup><mi>T</mi><mi>N</mi><mo>*</mo></msubsup></math> = 105 K, which occurs concomitantly with the onset of the metal-to-insulator (MIT) transition below <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msubsup><mi>T</mi><mi>N</mi><mo>*</mo></msubsup></math>. We investigate the conspicuous absence of this transition in the Pr and Nd analogs of <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi mathvariant=\\\"normal\\\">La</mi><mn>4</mn></msub><msub><mi mathvariant=\\\"normal\\\">Ni</mi><mn>3</mn></msub><msub><mi mathvariant=\\\"normal\\\">O</mi><mn>8</mn></msub></math>. For this purpose, we synthesized solid solutions of the form <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mo>(</mo><mi mathvariant=\\\"normal\\\">La</mi><mo>,</mo><msub><mrow><mi>Pr</mi><mo>)</mo></mrow><mn>4</mn></msub><msub><mi>Ni</mi><mn>3</mn></msub><msub><mi mathvariant=\\\"normal\\\">O</mi><mn>8</mn></msub></mrow></math> and <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mo>(</mo><mi mathvariant=\\\"normal\\\">La</mi><mo>,</mo><msub><mrow><mi>Nd</mi><mo>)</mo></mrow><mn>4</mn></msub><msub><mi>Ni</mi><mn>3</mn></msub><msub><mi mathvariant=\\\"normal\\\">O</mi><mn>8</mn></msub></mrow></math>, and examined the behavior of <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msubsup><mi>T</mi><mi>N</mi><mo>*</mo></msubsup></math> as a function of the average <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>R</mi></math>-site ionic radius (<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>r</mi><mover accent=\\\"true\\\"><mi>R</mi><mo>¯</mo></mover></msub></math>). We show that after an initial quasilinear decrease with decreasing <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>r</mi><mover accent=\\\"true\\\"><mi>R</mi><mo>¯</mo></mover></msub><mo>,</mo><mo> </mo><msubsup><mi>T</mi><mi>N</mi><mo>*</mo></msubsup></math> suddenly vanishes in the narrow range <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mn>1.134</mn><mo>≤</mo><mspace width=\\\"0.16em\\\"></mspace><msub><mi>r</mi><mover accent=\\\"true\\\"><mi>R</mi><mo>¯</mo></mover></msub><mspace width=\\\"0.16em\\\"></mspace><mo>≤</mo><mspace width=\\\"0.16em\\\"></mspace><mn>1.143</mn><mspace width=\\\"4pt\\\"></mspace><mtext>Å</mtext></mrow></math>. In the same range, we observed the emergence of a weak anomaly in the specific heat, whose onset temperature (<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mi>T</mi><mo>*</mo></msup></math>) increases as <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>r</mi><mover accent=\\\"true\\\"><mi>R</mi><mo>¯</mo></mover></msub></math> further decreases reaching a maximum of 13 K for <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi mathvariant=\\\"normal\\\">Nd</mi><mn>4</mn></msub><msub><mi mathvariant=\\\"normal\\\">Ni</mi><mn>3</mn></msub><msub><mi mathvariant=\\\"normal\\\">O</mi><mn>8</mn></msub></math>. We suggest, therefore, that the sudden vanishing of charge/spin-stripe/MIT ordering upon decreasing <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>r</mi><mover accent=\\\"true\\\"><mi>R</mi><mo>¯</mo></mover></msub></math> is related to the appearance of this new electronic phase for <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><msub><mi>r</mi><mover accent=\\\"true\\\"><mi>R</mi><mo>¯</mo></mover></msub><mo><</mo><msub><mi>r</mi><mi>c</mi></msub></mrow></math>. The nature of this phase or the weak anomaly and the point <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><msub><mi>r</mi><mover accent=\\\"true\\\"><mi>R</mi><mo>¯</mo></mover></msub><mo>≈</mo><msub><mi>r</mi><mi>c</mi></msub></mrow></math>, where <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msubsup><mi>T</mi><mi>N</mi><mo>*</mo></msubsup></math> vanishes and <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mi>T</mi><mo>*</mo></msup></math> appears, should be investigated further. In this regard, <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi mathvariant=\\\"normal\\\">Pr</mi><mn>4</mn></msub><msub><mi mathvariant=\\\"normal\\\">Ni</mi><mn>3</mn></msub><msub><mi mathvariant=\\\"normal\\\">O</mi><mn>8</mn></msub></math> and Pr-rich samples should be useful due to the weak magnetization response associated with the Pr sublattice, as shown here.\",\"PeriodicalId\":20082,\"journal\":{\"name\":\"Physical Review B\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevb.110.094412\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.110.094412","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Investigating the cause of crossover from charge/spin-stripe insulator to correlated metallic phase in layered T′ nickelates R4Ni3O8 (R=La,Pr,orNd)
The infinite layered () nickelates have recently garnered significant attention due to the discovery of superconductivity in hole-doped (), which is the member of the series . Here, we investigate the member, namely (), of this family. The compound exhibits simultaneous charge/spin-stripe ordering at = 105 K, which occurs concomitantly with the onset of the metal-to-insulator (MIT) transition below . We investigate the conspicuous absence of this transition in the Pr and Nd analogs of . For this purpose, we synthesized solid solutions of the form and , and examined the behavior of as a function of the average -site ionic radius (). We show that after an initial quasilinear decrease with decreasing suddenly vanishes in the narrow range . In the same range, we observed the emergence of a weak anomaly in the specific heat, whose onset temperature () increases as further decreases reaching a maximum of 13 K for . We suggest, therefore, that the sudden vanishing of charge/spin-stripe/MIT ordering upon decreasing is related to the appearance of this new electronic phase for . The nature of this phase or the weak anomaly and the point , where vanishes and appears, should be investigated further. In this regard, and Pr-rich samples should be useful due to the weak magnetization response associated with the Pr sublattice, as shown here.
期刊介绍:
Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide.
PRB covers the full range of condensed matter, materials physics, and related subfields, including:
-Structure and phase transitions
-Ferroelectrics and multiferroics
-Disordered systems and alloys
-Magnetism
-Superconductivity
-Electronic structure, photonics, and metamaterials
-Semiconductors and mesoscopic systems
-Surfaces, nanoscience, and two-dimensional materials
-Topological states of matter