研究层状 T′镍酸盐 R4Ni3O8(R=镧、镨或钕)中电荷/自旋条纹绝缘体向相关金属相交叉的原因

IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy
Dibyata Rout, Sanchayeta Ranajit Mudi, Suman Karmakar, Rajeev Rawat, Surjeet Singh
{"title":"研究层状 T′镍酸盐 R4Ni3O8(R=镧、镨或钕)中电荷/自旋条纹绝缘体向相关金属相交叉的原因","authors":"Dibyata Rout, Sanchayeta Ranajit Mudi, Suman Karmakar, Rajeev Rawat, Surjeet Singh","doi":"10.1103/physrevb.110.094412","DOIUrl":null,"url":null,"abstract":"The infinite layered (<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mi>T</mi><mo>′</mo></msup></math>) nickelates have recently garnered significant attention due to the discovery of superconductivity in hole-doped <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>R</mi><mtext>NiO</mtext></mrow><mn>2</mn></msub></math> (<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>R</mi><mo>=</mo><mi mathvariant=\"normal\">La</mi><mo>,</mo><mi mathvariant=\"normal\">Pr</mi><mo>,</mo><mtext>or</mtext><mi mathvariant=\"normal\">Nd</mi></mrow></math>), which is the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>n</mi><mo>=</mo><mi>∞</mi></mrow></math> member of the series <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi>R</mi><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><msub><mi>Ni</mi><mi>n</mi></msub><msub><mi mathvariant=\"normal\">O</mi><mrow><mn>2</mn><mi>n</mi><mo>+</mo><mn>2</mn></mrow></msub></mrow></math>. Here, we investigate the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>n</mi><mo>=</mo><mn>3</mn></mrow></math> member, namely <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi>R</mi><mn>4</mn></msub><msub><mi>Ni</mi><mn>3</mn></msub><msub><mi mathvariant=\"normal\">O</mi><mn>8</mn></msub></mrow></math> (<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>R</mi><mo>=</mo><mi mathvariant=\"normal\">La</mi><mo>,</mo><mi mathvariant=\"normal\">Pr</mi><mo>,</mo><mtext>or</mtext><mi mathvariant=\"normal\">Nd</mi></mrow></math>), of this family. The compound <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi mathvariant=\"normal\">La</mi><mn>4</mn></msub><msub><mi mathvariant=\"normal\">Ni</mi><mn>3</mn></msub><msub><mi mathvariant=\"normal\">O</mi><mn>8</mn></msub></math> exhibits simultaneous charge/spin-stripe ordering at <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup><mi>T</mi><mi>N</mi><mo>*</mo></msubsup></math> = 105 K, which occurs concomitantly with the onset of the metal-to-insulator (MIT) transition below <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup><mi>T</mi><mi>N</mi><mo>*</mo></msubsup></math>. We investigate the conspicuous absence of this transition in the Pr and Nd analogs of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi mathvariant=\"normal\">La</mi><mn>4</mn></msub><msub><mi mathvariant=\"normal\">Ni</mi><mn>3</mn></msub><msub><mi mathvariant=\"normal\">O</mi><mn>8</mn></msub></math>. For this purpose, we synthesized solid solutions of the form <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mo>(</mo><mi mathvariant=\"normal\">La</mi><mo>,</mo><msub><mrow><mi>Pr</mi><mo>)</mo></mrow><mn>4</mn></msub><msub><mi>Ni</mi><mn>3</mn></msub><msub><mi mathvariant=\"normal\">O</mi><mn>8</mn></msub></mrow></math> and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mo>(</mo><mi mathvariant=\"normal\">La</mi><mo>,</mo><msub><mrow><mi>Nd</mi><mo>)</mo></mrow><mn>4</mn></msub><msub><mi>Ni</mi><mn>3</mn></msub><msub><mi mathvariant=\"normal\">O</mi><mn>8</mn></msub></mrow></math>, and examined the behavior of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup><mi>T</mi><mi>N</mi><mo>*</mo></msubsup></math> as a function of the average <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>R</mi></math>-site ionic radius (<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>r</mi><mover accent=\"true\"><mi>R</mi><mo>¯</mo></mover></msub></math>). We show that after an initial quasilinear decrease with decreasing <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>r</mi><mover accent=\"true\"><mi>R</mi><mo>¯</mo></mover></msub><mo>,</mo><mo> </mo><msubsup><mi>T</mi><mi>N</mi><mo>*</mo></msubsup></math> suddenly vanishes in the narrow range <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>1.134</mn><mo>≤</mo><mspace width=\"0.16em\"></mspace><msub><mi>r</mi><mover accent=\"true\"><mi>R</mi><mo>¯</mo></mover></msub><mspace width=\"0.16em\"></mspace><mo>≤</mo><mspace width=\"0.16em\"></mspace><mn>1.143</mn><mspace width=\"4pt\"></mspace><mtext>Å</mtext></mrow></math>. In the same range, we observed the emergence of a weak anomaly in the specific heat, whose onset temperature (<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mi>T</mi><mo>*</mo></msup></math>) increases as <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>r</mi><mover accent=\"true\"><mi>R</mi><mo>¯</mo></mover></msub></math> further decreases reaching a maximum of 13 K for <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi mathvariant=\"normal\">Nd</mi><mn>4</mn></msub><msub><mi mathvariant=\"normal\">Ni</mi><mn>3</mn></msub><msub><mi mathvariant=\"normal\">O</mi><mn>8</mn></msub></math>. We suggest, therefore, that the sudden vanishing of charge/spin-stripe/MIT ordering upon decreasing <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>r</mi><mover accent=\"true\"><mi>R</mi><mo>¯</mo></mover></msub></math> is related to the appearance of this new electronic phase for <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi>r</mi><mover accent=\"true\"><mi>R</mi><mo>¯</mo></mover></msub><mo>&lt;</mo><msub><mi>r</mi><mi>c</mi></msub></mrow></math>. The nature of this phase or the weak anomaly and the point <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi>r</mi><mover accent=\"true\"><mi>R</mi><mo>¯</mo></mover></msub><mo>≈</mo><msub><mi>r</mi><mi>c</mi></msub></mrow></math>, where <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup><mi>T</mi><mi>N</mi><mo>*</mo></msubsup></math> vanishes and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mi>T</mi><mo>*</mo></msup></math> appears, should be investigated further. In this regard, <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi mathvariant=\"normal\">Pr</mi><mn>4</mn></msub><msub><mi mathvariant=\"normal\">Ni</mi><mn>3</mn></msub><msub><mi mathvariant=\"normal\">O</mi><mn>8</mn></msub></math> and Pr-rich samples should be useful due to the weak magnetization response associated with the Pr sublattice, as shown here.","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating the cause of crossover from charge/spin-stripe insulator to correlated metallic phase in layered T′ nickelates R4Ni3O8 (R=La,Pr,orNd)\",\"authors\":\"Dibyata Rout, Sanchayeta Ranajit Mudi, Suman Karmakar, Rajeev Rawat, Surjeet Singh\",\"doi\":\"10.1103/physrevb.110.094412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The infinite layered (<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mi>T</mi><mo>′</mo></msup></math>) nickelates have recently garnered significant attention due to the discovery of superconductivity in hole-doped <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi>R</mi><mtext>NiO</mtext></mrow><mn>2</mn></msub></math> (<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>R</mi><mo>=</mo><mi mathvariant=\\\"normal\\\">La</mi><mo>,</mo><mi mathvariant=\\\"normal\\\">Pr</mi><mo>,</mo><mtext>or</mtext><mi mathvariant=\\\"normal\\\">Nd</mi></mrow></math>), which is the <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>n</mi><mo>=</mo><mi>∞</mi></mrow></math> member of the series <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><msub><mi>R</mi><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><msub><mi>Ni</mi><mi>n</mi></msub><msub><mi mathvariant=\\\"normal\\\">O</mi><mrow><mn>2</mn><mi>n</mi><mo>+</mo><mn>2</mn></mrow></msub></mrow></math>. Here, we investigate the <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>n</mi><mo>=</mo><mn>3</mn></mrow></math> member, namely <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><msub><mi>R</mi><mn>4</mn></msub><msub><mi>Ni</mi><mn>3</mn></msub><msub><mi mathvariant=\\\"normal\\\">O</mi><mn>8</mn></msub></mrow></math> (<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>R</mi><mo>=</mo><mi mathvariant=\\\"normal\\\">La</mi><mo>,</mo><mi mathvariant=\\\"normal\\\">Pr</mi><mo>,</mo><mtext>or</mtext><mi mathvariant=\\\"normal\\\">Nd</mi></mrow></math>), of this family. The compound <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi mathvariant=\\\"normal\\\">La</mi><mn>4</mn></msub><msub><mi mathvariant=\\\"normal\\\">Ni</mi><mn>3</mn></msub><msub><mi mathvariant=\\\"normal\\\">O</mi><mn>8</mn></msub></math> exhibits simultaneous charge/spin-stripe ordering at <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msubsup><mi>T</mi><mi>N</mi><mo>*</mo></msubsup></math> = 105 K, which occurs concomitantly with the onset of the metal-to-insulator (MIT) transition below <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msubsup><mi>T</mi><mi>N</mi><mo>*</mo></msubsup></math>. We investigate the conspicuous absence of this transition in the Pr and Nd analogs of <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi mathvariant=\\\"normal\\\">La</mi><mn>4</mn></msub><msub><mi mathvariant=\\\"normal\\\">Ni</mi><mn>3</mn></msub><msub><mi mathvariant=\\\"normal\\\">O</mi><mn>8</mn></msub></math>. For this purpose, we synthesized solid solutions of the form <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mo>(</mo><mi mathvariant=\\\"normal\\\">La</mi><mo>,</mo><msub><mrow><mi>Pr</mi><mo>)</mo></mrow><mn>4</mn></msub><msub><mi>Ni</mi><mn>3</mn></msub><msub><mi mathvariant=\\\"normal\\\">O</mi><mn>8</mn></msub></mrow></math> and <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mo>(</mo><mi mathvariant=\\\"normal\\\">La</mi><mo>,</mo><msub><mrow><mi>Nd</mi><mo>)</mo></mrow><mn>4</mn></msub><msub><mi>Ni</mi><mn>3</mn></msub><msub><mi mathvariant=\\\"normal\\\">O</mi><mn>8</mn></msub></mrow></math>, and examined the behavior of <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msubsup><mi>T</mi><mi>N</mi><mo>*</mo></msubsup></math> as a function of the average <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>R</mi></math>-site ionic radius (<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>r</mi><mover accent=\\\"true\\\"><mi>R</mi><mo>¯</mo></mover></msub></math>). We show that after an initial quasilinear decrease with decreasing <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>r</mi><mover accent=\\\"true\\\"><mi>R</mi><mo>¯</mo></mover></msub><mo>,</mo><mo> </mo><msubsup><mi>T</mi><mi>N</mi><mo>*</mo></msubsup></math> suddenly vanishes in the narrow range <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mn>1.134</mn><mo>≤</mo><mspace width=\\\"0.16em\\\"></mspace><msub><mi>r</mi><mover accent=\\\"true\\\"><mi>R</mi><mo>¯</mo></mover></msub><mspace width=\\\"0.16em\\\"></mspace><mo>≤</mo><mspace width=\\\"0.16em\\\"></mspace><mn>1.143</mn><mspace width=\\\"4pt\\\"></mspace><mtext>Å</mtext></mrow></math>. In the same range, we observed the emergence of a weak anomaly in the specific heat, whose onset temperature (<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mi>T</mi><mo>*</mo></msup></math>) increases as <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>r</mi><mover accent=\\\"true\\\"><mi>R</mi><mo>¯</mo></mover></msub></math> further decreases reaching a maximum of 13 K for <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi mathvariant=\\\"normal\\\">Nd</mi><mn>4</mn></msub><msub><mi mathvariant=\\\"normal\\\">Ni</mi><mn>3</mn></msub><msub><mi mathvariant=\\\"normal\\\">O</mi><mn>8</mn></msub></math>. We suggest, therefore, that the sudden vanishing of charge/spin-stripe/MIT ordering upon decreasing <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>r</mi><mover accent=\\\"true\\\"><mi>R</mi><mo>¯</mo></mover></msub></math> is related to the appearance of this new electronic phase for <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><msub><mi>r</mi><mover accent=\\\"true\\\"><mi>R</mi><mo>¯</mo></mover></msub><mo>&lt;</mo><msub><mi>r</mi><mi>c</mi></msub></mrow></math>. The nature of this phase or the weak anomaly and the point <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><msub><mi>r</mi><mover accent=\\\"true\\\"><mi>R</mi><mo>¯</mo></mover></msub><mo>≈</mo><msub><mi>r</mi><mi>c</mi></msub></mrow></math>, where <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msubsup><mi>T</mi><mi>N</mi><mo>*</mo></msubsup></math> vanishes and <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mi>T</mi><mo>*</mo></msup></math> appears, should be investigated further. In this regard, <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi mathvariant=\\\"normal\\\">Pr</mi><mn>4</mn></msub><msub><mi mathvariant=\\\"normal\\\">Ni</mi><mn>3</mn></msub><msub><mi mathvariant=\\\"normal\\\">O</mi><mn>8</mn></msub></math> and Pr-rich samples should be useful due to the weak magnetization response associated with the Pr sublattice, as shown here.\",\"PeriodicalId\":20082,\"journal\":{\"name\":\"Physical Review B\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevb.110.094412\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.110.094412","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

由于在掺空穴的 RNiO2(R=La、Pr 或 Nd)中发现了超导性,无穷层(T′)镍酸盐最近引起了极大的关注,RNiO2 是 Rn+1NinO2n+2 系列中的 n=∞ 成员。在此,我们将研究该系列中的 n=3 个成员,即 R4Ni3O8(R=La、Pr 或 Nd)。化合物 La4Ni3O8 在 TN* = 105 K 时同时表现出电荷/自旋条纹有序,这与低于 TN* 的金属-绝缘体(MIT)转变同时发生。我们研究了 La4Ni3O8 的 Pr 和 Nd 类似物中明显缺乏这种转变的现象。为此,我们合成了 (La,Pr)4Ni3O8 和 (La,Nd)4Ni3O8 形式的固溶体,并考察了 TN* 与平均 R 位离子半径 (rR¯) 的函数关系。我们发现,随着 rR¯ 的减小,TN* 最初呈类线性下降,然后在 1.134≤rR¯≤1.143Å 的狭窄范围内突然消失。在同一范围内,我们观察到比热出现了微弱的异常,其起始温度(T*)随着 rR¯ 的进一步减小而升高,在 Nd4Ni3O8 中达到 13 K 的最大值。因此,我们认为,rR¯降低时电荷/自旋条纹/MIT有序的突然消失与 rR¯<rc出现的这种新电子相有关。这一阶段或弱异常的性质,以及 TN* 消失和 T* 出现的 rR¯≈rc 点,都有待进一步研究。在这方面,Pr4Ni3O8 和富镨样品应该是有用的,因为它们具有与镨亚晶格相关的弱磁化响应,如本文所示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Investigating the cause of crossover from charge/spin-stripe insulator to correlated metallic phase in layered T′ nickelates R4Ni3O8 (R=La,Pr,orNd)

Investigating the cause of crossover from charge/spin-stripe insulator to correlated metallic phase in layered T′ nickelates R4Ni3O8 (R=La,Pr,orNd)
The infinite layered (T) nickelates have recently garnered significant attention due to the discovery of superconductivity in hole-doped RNiO2 (R=La,Pr,orNd), which is the n= member of the series Rn+1NinO2n+2. Here, we investigate the n=3 member, namely R4Ni3O8 (R=La,Pr,orNd), of this family. The compound La4Ni3O8 exhibits simultaneous charge/spin-stripe ordering at TN* = 105 K, which occurs concomitantly with the onset of the metal-to-insulator (MIT) transition below TN*. We investigate the conspicuous absence of this transition in the Pr and Nd analogs of La4Ni3O8. For this purpose, we synthesized solid solutions of the form (La,Pr)4Ni3O8 and (La,Nd)4Ni3O8, and examined the behavior of TN* as a function of the average R-site ionic radius (rR¯). We show that after an initial quasilinear decrease with decreasing rR¯, TN* suddenly vanishes in the narrow range 1.134rR¯1.143Å. In the same range, we observed the emergence of a weak anomaly in the specific heat, whose onset temperature (T*) increases as rR¯ further decreases reaching a maximum of 13 K for Nd4Ni3O8. We suggest, therefore, that the sudden vanishing of charge/spin-stripe/MIT ordering upon decreasing rR¯ is related to the appearance of this new electronic phase for rR¯<rc. The nature of this phase or the weak anomaly and the point rR¯rc, where TN* vanishes and T* appears, should be investigated further. In this regard, Pr4Ni3O8 and Pr-rich samples should be useful due to the weak magnetization response associated with the Pr sublattice, as shown here.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review B
Physical Review B 物理-物理:凝聚态物理
CiteScore
6.70
自引率
32.40%
发文量
0
审稿时长
3.0 months
期刊介绍: Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide. PRB covers the full range of condensed matter, materials physics, and related subfields, including: -Structure and phase transitions -Ferroelectrics and multiferroics -Disordered systems and alloys -Magnetism -Superconductivity -Electronic structure, photonics, and metamaterials -Semiconductors and mesoscopic systems -Surfaces, nanoscience, and two-dimensional materials -Topological states of matter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信