{"title":"圆偏振光照射铁磁 MnBi2Te4:一种可能的理想韦尔半金属","authors":"Shuai Fan, Shengpu Huang, Zhuo Chen, Fangyang Zhan, Xian-Yong Ding, Da-Shuai Ma, Rui Wang","doi":"10.1103/physrevb.110.125204","DOIUrl":null,"url":null,"abstract":"The interaction between light and nontrivial energy band topology allows for the precise manipulation of topological quantum states, which has attracted intensive interest in condensed-matter physics. In this work, using first-principles calculations, we studied the topological transition of ferromagnetic (FM) <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi>MnBi</mi><mn>2</mn></msub><msub><mi>Te</mi><mn>4</mn></msub></mrow></math> upon irradiation with circularly polarized light (CPL). We revealed that the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi>MnBi</mi><mn>2</mn></msub><msub><mi>Te</mi><mn>4</mn></msub></mrow></math> can be driven from an FM insulator to a Weyl semimetal with a minimum number of Weyl points, i.e., two Weyl points (WPs) in systems without time-reversal symmetry. More importantly, in FM <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi>MnBi</mi><mn>2</mn></msub><msub><mi>Te</mi><mn>4</mn></msub></mrow></math> with an out-of-plane easy magnetization axis, we found that the band dispersion of the WP evolves from type-II to type-III and finally to type-I when the light intensity increases. Moreover, we show that the profile of the characteristic Fermi arc of the Weyl semimetal phase is sensitive to changes in light intensity, which enables efficient manipulation of the Fermi arc length of FM <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi>MnBi</mi><mn>2</mn></msub><msub><mi>Te</mi><mn>4</mn></msub></mrow></math> in experiments. In addition, for FM <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi>MnBi</mi><mn>2</mn></msub><msub><mi>Te</mi><mn>4</mn></msub></mrow></math> with an in-plane easy magnetization axis, the system becomes a type-I Weyl semimetal under CPL irradiation. With controllable band dispersion, the length of the Fermi arc, and a minimum number of WPs, our results indicate that CPL-irradiated FM <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi>MnBi</mi><mn>2</mn></msub><msub><mi>Te</mi><mn>4</mn></msub></mrow></math> is an ideal platform for the study of novel transport phenomena in Weyl semimetals with distinct band dispersion.","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Circularly polarized light irradiated ferromagnetic MnBi2Te4: A possible ideal Weyl semimetal\",\"authors\":\"Shuai Fan, Shengpu Huang, Zhuo Chen, Fangyang Zhan, Xian-Yong Ding, Da-Shuai Ma, Rui Wang\",\"doi\":\"10.1103/physrevb.110.125204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The interaction between light and nontrivial energy band topology allows for the precise manipulation of topological quantum states, which has attracted intensive interest in condensed-matter physics. In this work, using first-principles calculations, we studied the topological transition of ferromagnetic (FM) <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><msub><mi>MnBi</mi><mn>2</mn></msub><msub><mi>Te</mi><mn>4</mn></msub></mrow></math> upon irradiation with circularly polarized light (CPL). We revealed that the <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><msub><mi>MnBi</mi><mn>2</mn></msub><msub><mi>Te</mi><mn>4</mn></msub></mrow></math> can be driven from an FM insulator to a Weyl semimetal with a minimum number of Weyl points, i.e., two Weyl points (WPs) in systems without time-reversal symmetry. More importantly, in FM <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><msub><mi>MnBi</mi><mn>2</mn></msub><msub><mi>Te</mi><mn>4</mn></msub></mrow></math> with an out-of-plane easy magnetization axis, we found that the band dispersion of the WP evolves from type-II to type-III and finally to type-I when the light intensity increases. Moreover, we show that the profile of the characteristic Fermi arc of the Weyl semimetal phase is sensitive to changes in light intensity, which enables efficient manipulation of the Fermi arc length of FM <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><msub><mi>MnBi</mi><mn>2</mn></msub><msub><mi>Te</mi><mn>4</mn></msub></mrow></math> in experiments. In addition, for FM <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><msub><mi>MnBi</mi><mn>2</mn></msub><msub><mi>Te</mi><mn>4</mn></msub></mrow></math> with an in-plane easy magnetization axis, the system becomes a type-I Weyl semimetal under CPL irradiation. With controllable band dispersion, the length of the Fermi arc, and a minimum number of WPs, our results indicate that CPL-irradiated FM <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><msub><mi>MnBi</mi><mn>2</mn></msub><msub><mi>Te</mi><mn>4</mn></msub></mrow></math> is an ideal platform for the study of novel transport phenomena in Weyl semimetals with distinct band dispersion.\",\"PeriodicalId\":20082,\"journal\":{\"name\":\"Physical Review B\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevb.110.125204\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.110.125204","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Circularly polarized light irradiated ferromagnetic MnBi2Te4: A possible ideal Weyl semimetal
The interaction between light and nontrivial energy band topology allows for the precise manipulation of topological quantum states, which has attracted intensive interest in condensed-matter physics. In this work, using first-principles calculations, we studied the topological transition of ferromagnetic (FM) upon irradiation with circularly polarized light (CPL). We revealed that the can be driven from an FM insulator to a Weyl semimetal with a minimum number of Weyl points, i.e., two Weyl points (WPs) in systems without time-reversal symmetry. More importantly, in FM with an out-of-plane easy magnetization axis, we found that the band dispersion of the WP evolves from type-II to type-III and finally to type-I when the light intensity increases. Moreover, we show that the profile of the characteristic Fermi arc of the Weyl semimetal phase is sensitive to changes in light intensity, which enables efficient manipulation of the Fermi arc length of FM in experiments. In addition, for FM with an in-plane easy magnetization axis, the system becomes a type-I Weyl semimetal under CPL irradiation. With controllable band dispersion, the length of the Fermi arc, and a minimum number of WPs, our results indicate that CPL-irradiated FM is an ideal platform for the study of novel transport phenomena in Weyl semimetals with distinct band dispersion.
期刊介绍:
Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide.
PRB covers the full range of condensed matter, materials physics, and related subfields, including:
-Structure and phase transitions
-Ferroelectrics and multiferroics
-Disordered systems and alloys
-Magnetism
-Superconductivity
-Electronic structure, photonics, and metamaterials
-Semiconductors and mesoscopic systems
-Surfaces, nanoscience, and two-dimensional materials
-Topological states of matter