电荷数为 1-7 的重核从氦靶俘获单电子

IF 2.7 3区 物理与天体物理 Q2 PHYSICS, ATOMIC, MOLECULAR & CHEMICAL
I. Mančev , N. Milojević , D. Delibašić , M. Milenković , Dž. Belkić
{"title":"电荷数为 1-7 的重核从氦靶俘获单电子","authors":"I. Mančev ,&nbsp;N. Milojević ,&nbsp;D. Delibašić ,&nbsp;M. Milenković ,&nbsp;Dž. Belkić","doi":"10.1016/j.adt.2024.101685","DOIUrl":null,"url":null,"abstract":"<div><p>Single-electron capture by multiply charged nuclei from helium atoms is studied by means of the prior form of the four-body boundary-corrected continuum intermediate state (BCIS-4B) method. Computations concern total cross sections for the state-selective (<span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi><mi>l</mi><mi>m</mi></mrow></msub></math></span>) and state-summed (<span><math><mrow><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi><mi>l</mi></mrow></msub><mo>,</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>Σ</mi></mrow></msub></mrow></math></span>) populations at 20–3000 keV/amu. These refer to the collisions of the type <span><math><mrow><msup><mrow><mi>A</mi></mrow><mrow><msub><mrow><mi>Z</mi></mrow><mrow><mi>P</mi></mrow></msub><mo>+</mo></mrow></msup><mo>+</mo><mi>He</mi><mrow><mo>(</mo><mn>1</mn><msup><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mo>→</mo><msup><mrow><mi>A</mi></mrow><mrow><mrow><mo>(</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>P</mi></mrow></msub><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mo>+</mo></mrow></msup><mrow><mo>(</mo><mi>n</mi><mi>l</mi><mi>m</mi><mo>)</mo></mrow><mo>+</mo><msup><mrow><mi>He</mi></mrow><mrow><mo>+</mo></mrow></msup><mrow><mo>(</mo><mn>1</mn><mi>s</mi><mo>)</mo></mrow></mrow></math></span>. Here, the projectile <span><math><msup><mrow><mi>A</mi></mrow><mrow><msub><mrow><mi>Z</mi></mrow><mrow><mi>P</mi></mrow></msub><mo>+</mo></mrow></msup></math></span> covers the ions <span><math><msup><mrow><mi>H</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span>, <span><math><msup><mrow><mi>He</mi></mrow><mrow><mn>2</mn><mo>+</mo></mrow></msup></math></span>, <span><math><msup><mrow><mi>Li</mi></mrow><mrow><mn>3</mn><mo>+</mo></mrow></msup></math></span>, <span><math><msup><mrow><mi>Be</mi></mrow><mrow><mn>4</mn><mo>+</mo></mrow></msup></math></span>, <span><math><msup><mrow><mi>B</mi></mrow><mrow><mn>5</mn><mo>+</mo></mrow></msup></math></span>, <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>6</mn><mo>+</mo></mrow></msup></math></span> and <span><math><msup><mrow><mi>N</mi></mrow><mrow><mn>7</mn><mo>+</mo></mrow></msup></math></span>. The reported findings are tabulated for each value of the quantum numbers <span><math><mrow><mo>{</mo><mi>n</mi><mo>,</mo><mi>l</mi><mo>,</mo><mi>m</mi><mo>}</mo></mrow></math></span>. The maximum values <span><math><msub><mrow><mi>n</mi></mrow><mrow><mo>max</mo></mrow></msub></math></span> of the principal quantum number <span><math><mi>n</mi></math></span> are 4 (<span><math><msup><mrow><mi>H</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span>, <span><math><msup><mrow><mi>He</mi></mrow><mrow><mn>2</mn><mo>+</mo></mrow></msup></math></span>, <span><math><msup><mrow><mi>Li</mi></mrow><mrow><mn>3</mn><mo>+</mo></mrow></msup></math></span>), 5 (<span><math><msup><mrow><mi>Be</mi></mrow><mrow><mn>4</mn><mo>+</mo></mrow></msup></math></span>), 6 (<span><math><msup><mrow><mi>B</mi></mrow><mrow><mn>5</mn><mo>+</mo></mrow></msup></math></span>) and 7 (<span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>6</mn><mo>+</mo></mrow></msup></math></span>, <span><math><msup><mrow><mi>N</mi></mrow><mrow><mn>7</mn><mo>+</mo></mrow></msup></math></span>). The sum over all the <span><math><mi>n</mi></math></span> states is truncated by selecting an appropriate cutoff value <span><math><msub><mrow><mi>n</mi></mrow><mrow><mo>max</mo></mrow></msub></math></span> and by subsequently applying the Oppenheimer <span><math><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></math></span> scaling rule to approximately include the contributions from <span><math><mrow><mi>n</mi><mo>&gt;</mo><msub><mrow><mi>n</mi></mrow><mrow><mo>max</mo></mrow></msub></mrow></math></span>. The obtained results for <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>Σ</mi></mrow></msub></math></span> and for some final <span><math><mrow><mi>n</mi><mo>−</mo></mrow></math></span>specific states favorably describe the corresponding experimental data. This qualifies the prior form of the BCIS-4B method for further useful applications in several interdisciplinary fields, including astrophysics, thermonuclear fusion, plasma physics and ion therapy in medicine.</p></div>","PeriodicalId":55580,"journal":{"name":"Atomic Data and Nuclear Data Tables","volume":"160 ","pages":"Article 101685"},"PeriodicalIF":2.7000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single-electron capture from helium targets by heavy nuclei of charges 1–7\",\"authors\":\"I. Mančev ,&nbsp;N. Milojević ,&nbsp;D. Delibašić ,&nbsp;M. Milenković ,&nbsp;Dž. Belkić\",\"doi\":\"10.1016/j.adt.2024.101685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Single-electron capture by multiply charged nuclei from helium atoms is studied by means of the prior form of the four-body boundary-corrected continuum intermediate state (BCIS-4B) method. Computations concern total cross sections for the state-selective (<span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi><mi>l</mi><mi>m</mi></mrow></msub></math></span>) and state-summed (<span><math><mrow><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi><mi>l</mi></mrow></msub><mo>,</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>Σ</mi></mrow></msub></mrow></math></span>) populations at 20–3000 keV/amu. These refer to the collisions of the type <span><math><mrow><msup><mrow><mi>A</mi></mrow><mrow><msub><mrow><mi>Z</mi></mrow><mrow><mi>P</mi></mrow></msub><mo>+</mo></mrow></msup><mo>+</mo><mi>He</mi><mrow><mo>(</mo><mn>1</mn><msup><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mo>→</mo><msup><mrow><mi>A</mi></mrow><mrow><mrow><mo>(</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>P</mi></mrow></msub><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mo>+</mo></mrow></msup><mrow><mo>(</mo><mi>n</mi><mi>l</mi><mi>m</mi><mo>)</mo></mrow><mo>+</mo><msup><mrow><mi>He</mi></mrow><mrow><mo>+</mo></mrow></msup><mrow><mo>(</mo><mn>1</mn><mi>s</mi><mo>)</mo></mrow></mrow></math></span>. Here, the projectile <span><math><msup><mrow><mi>A</mi></mrow><mrow><msub><mrow><mi>Z</mi></mrow><mrow><mi>P</mi></mrow></msub><mo>+</mo></mrow></msup></math></span> covers the ions <span><math><msup><mrow><mi>H</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span>, <span><math><msup><mrow><mi>He</mi></mrow><mrow><mn>2</mn><mo>+</mo></mrow></msup></math></span>, <span><math><msup><mrow><mi>Li</mi></mrow><mrow><mn>3</mn><mo>+</mo></mrow></msup></math></span>, <span><math><msup><mrow><mi>Be</mi></mrow><mrow><mn>4</mn><mo>+</mo></mrow></msup></math></span>, <span><math><msup><mrow><mi>B</mi></mrow><mrow><mn>5</mn><mo>+</mo></mrow></msup></math></span>, <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>6</mn><mo>+</mo></mrow></msup></math></span> and <span><math><msup><mrow><mi>N</mi></mrow><mrow><mn>7</mn><mo>+</mo></mrow></msup></math></span>. The reported findings are tabulated for each value of the quantum numbers <span><math><mrow><mo>{</mo><mi>n</mi><mo>,</mo><mi>l</mi><mo>,</mo><mi>m</mi><mo>}</mo></mrow></math></span>. The maximum values <span><math><msub><mrow><mi>n</mi></mrow><mrow><mo>max</mo></mrow></msub></math></span> of the principal quantum number <span><math><mi>n</mi></math></span> are 4 (<span><math><msup><mrow><mi>H</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span>, <span><math><msup><mrow><mi>He</mi></mrow><mrow><mn>2</mn><mo>+</mo></mrow></msup></math></span>, <span><math><msup><mrow><mi>Li</mi></mrow><mrow><mn>3</mn><mo>+</mo></mrow></msup></math></span>), 5 (<span><math><msup><mrow><mi>Be</mi></mrow><mrow><mn>4</mn><mo>+</mo></mrow></msup></math></span>), 6 (<span><math><msup><mrow><mi>B</mi></mrow><mrow><mn>5</mn><mo>+</mo></mrow></msup></math></span>) and 7 (<span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>6</mn><mo>+</mo></mrow></msup></math></span>, <span><math><msup><mrow><mi>N</mi></mrow><mrow><mn>7</mn><mo>+</mo></mrow></msup></math></span>). The sum over all the <span><math><mi>n</mi></math></span> states is truncated by selecting an appropriate cutoff value <span><math><msub><mrow><mi>n</mi></mrow><mrow><mo>max</mo></mrow></msub></math></span> and by subsequently applying the Oppenheimer <span><math><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></math></span> scaling rule to approximately include the contributions from <span><math><mrow><mi>n</mi><mo>&gt;</mo><msub><mrow><mi>n</mi></mrow><mrow><mo>max</mo></mrow></msub></mrow></math></span>. The obtained results for <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>Σ</mi></mrow></msub></math></span> and for some final <span><math><mrow><mi>n</mi><mo>−</mo></mrow></math></span>specific states favorably describe the corresponding experimental data. This qualifies the prior form of the BCIS-4B method for further useful applications in several interdisciplinary fields, including astrophysics, thermonuclear fusion, plasma physics and ion therapy in medicine.</p></div>\",\"PeriodicalId\":55580,\"journal\":{\"name\":\"Atomic Data and Nuclear Data Tables\",\"volume\":\"160 \",\"pages\":\"Article 101685\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atomic Data and Nuclear Data Tables\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0092640X24000500\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atomic Data and Nuclear Data Tables","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0092640X24000500","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

通过四体边界校正连续中间态(BCIS-4B)方法的先验形式,研究了氦原子多电荷核的单电子俘获。计算涉及 20-3000 keV/amu 下的态选择群(Qnlm)和态总和群(Qnl,Qn,QΣ)的总截面。这些是指 AZP++He(1s2)→A(ZP-1)+(nlm)+He+(1s) 类型的碰撞。这里,射弹 AZP+ 包括 H+、He2+、Li3+、Be4+、B5+、C6+ 和 N7+ 离子。报告的研究结果按量子数 {n,l,m} 的每个值列表。主量子数 n 的最大值 nmax 分别为 4(H+、He2+、Li3+)、5(Be4+)、6(B5+)和 7(C6+、N7+)。通过选择一个适当的截断值 nmax,并随后应用奥本海默 n-3 缩放规则,将来自 n>nmax 的贡献大致包括在内,从而截断了所有 n 状态的总和。所得到的 QΣ 和某些最终 n 特定态的结果很好地描述了相应的实验数据。这使得 BCIS-4B 方法的先验形式有资格进一步应用于多个跨学科领域,包括天体物理学、热核聚变、等离子体物理学和医学中的离子疗法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Single-electron capture from helium targets by heavy nuclei of charges 1–7

Single-electron capture by multiply charged nuclei from helium atoms is studied by means of the prior form of the four-body boundary-corrected continuum intermediate state (BCIS-4B) method. Computations concern total cross sections for the state-selective (Qnlm) and state-summed (Qnl,Qn,QΣ) populations at 20–3000 keV/amu. These refer to the collisions of the type AZP++He(1s2)A(ZP1)+(nlm)+He+(1s). Here, the projectile AZP+ covers the ions H+, He2+, Li3+, Be4+, B5+, C6+ and N7+. The reported findings are tabulated for each value of the quantum numbers {n,l,m}. The maximum values nmax of the principal quantum number n are 4 (H+, He2+, Li3+), 5 (Be4+), 6 (B5+) and 7 (C6+, N7+). The sum over all the n states is truncated by selecting an appropriate cutoff value nmax and by subsequently applying the Oppenheimer n3 scaling rule to approximately include the contributions from n>nmax. The obtained results for QΣ and for some final nspecific states favorably describe the corresponding experimental data. This qualifies the prior form of the BCIS-4B method for further useful applications in several interdisciplinary fields, including astrophysics, thermonuclear fusion, plasma physics and ion therapy in medicine.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Atomic Data and Nuclear Data Tables
Atomic Data and Nuclear Data Tables 物理-物理:核物理
CiteScore
4.50
自引率
11.10%
发文量
27
审稿时长
47 days
期刊介绍: Atomic Data and Nuclear Data Tables presents compilations of experimental and theoretical information in atomic physics, nuclear physics, and closely related fields. The journal is devoted to the publication of tables and graphs of general usefulness to researchers in both basic and applied areas. Extensive ... click here for full Aims & Scope Atomic Data and Nuclear Data Tables presents compilations of experimental and theoretical information in atomic physics, nuclear physics, and closely related fields. The journal is devoted to the publication of tables and graphs of general usefulness to researchers in both basic and applied areas. Extensive and comprehensive compilations of experimental and theoretical results are featured.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信