最大零和分割问题

IF 0.9 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Guillaume Fertin , Oscar Fontaine , Géraldine Jean , Stéphane Vialette
{"title":"最大零和分割问题","authors":"Guillaume Fertin ,&nbsp;Oscar Fontaine ,&nbsp;Géraldine Jean ,&nbsp;Stéphane Vialette","doi":"10.1016/j.tcs.2024.114811","DOIUrl":null,"url":null,"abstract":"<div><p>We study the <span>Maximum Zero-Sum Partition</span> problem (or <span>MZSP</span>), defined as follows: given a multiset <span><math><mi>S</mi><mo>=</mo><mo>{</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>}</mo></math></span> of integers <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><msup><mrow><mi>Z</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> (where <span><math><msup><mrow><mi>Z</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> denotes the set of non-zero integers) such that <span><math><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>=</mo><mn>0</mn></math></span>, find a maximum cardinality partition <span><math><mo>{</mo><msub><mrow><mi>S</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>}</mo></math></span> of <span><math><mi>S</mi></math></span> such that, for every <span><math><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>k</mi></math></span>, <span><math><msub><mrow><mo>∑</mo></mrow><mrow><msub><mrow><mi>a</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>∈</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msub><msub><mrow><mi>a</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>=</mo><mn>0</mn></math></span>. Solving <span>MZSP</span> is useful in genomics for computing evolutionary distances between pairs of species. Our contributions are a series of algorithmic results concerning <span>MZSP</span>, in terms of complexity, (in)approximability, with a particular focus on the fixed-parameter tractability of <span>MZSP</span> with respect to either (i) the size <em>k</em> of the solution, (ii) the number of negative (resp. positive) values in <span><math><mi>S</mi></math></span> and (iii) the largest integer in <span><math><mi>S</mi></math></span>.</p></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1019 ","pages":"Article 114811"},"PeriodicalIF":0.9000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0304397524004286/pdfft?md5=834de52b293d98cccaa7d3d01b33ccb6&pid=1-s2.0-S0304397524004286-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The Maximum Zero-Sum Partition problem\",\"authors\":\"Guillaume Fertin ,&nbsp;Oscar Fontaine ,&nbsp;Géraldine Jean ,&nbsp;Stéphane Vialette\",\"doi\":\"10.1016/j.tcs.2024.114811\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study the <span>Maximum Zero-Sum Partition</span> problem (or <span>MZSP</span>), defined as follows: given a multiset <span><math><mi>S</mi><mo>=</mo><mo>{</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>}</mo></math></span> of integers <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><msup><mrow><mi>Z</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> (where <span><math><msup><mrow><mi>Z</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> denotes the set of non-zero integers) such that <span><math><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>=</mo><mn>0</mn></math></span>, find a maximum cardinality partition <span><math><mo>{</mo><msub><mrow><mi>S</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>}</mo></math></span> of <span><math><mi>S</mi></math></span> such that, for every <span><math><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>k</mi></math></span>, <span><math><msub><mrow><mo>∑</mo></mrow><mrow><msub><mrow><mi>a</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>∈</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msub><msub><mrow><mi>a</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>=</mo><mn>0</mn></math></span>. Solving <span>MZSP</span> is useful in genomics for computing evolutionary distances between pairs of species. Our contributions are a series of algorithmic results concerning <span>MZSP</span>, in terms of complexity, (in)approximability, with a particular focus on the fixed-parameter tractability of <span>MZSP</span> with respect to either (i) the size <em>k</em> of the solution, (ii) the number of negative (resp. positive) values in <span><math><mi>S</mi></math></span> and (iii) the largest integer in <span><math><mi>S</mi></math></span>.</p></div>\",\"PeriodicalId\":49438,\"journal\":{\"name\":\"Theoretical Computer Science\",\"volume\":\"1019 \",\"pages\":\"Article 114811\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0304397524004286/pdfft?md5=834de52b293d98cccaa7d3d01b33ccb6&pid=1-s2.0-S0304397524004286-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304397524004286\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304397524004286","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究的最大零和分割问题(或 MZSP)定义如下:给定一个由整数 ai∈Z⁎ 组成的多集合 S={a1,a2,...,an}(其中 Z⁎ 表示非零整数集合),使得∑i=1nai=0,找出 S 的最大卡方分割 {S1,S2,...,Sk},使得对于每 1≤i≤k,∑aj∈Siaj=0。求解 MZSP 对基因组学中计算物种对之间的进化距离非常有用。我们的贡献是一系列有关 MZSP 的算法结果,包括复杂性、(不)近似性,特别是 MZSP 在以下方面的固定参数可操作性:(i) 解的大小 k;(ii) S 中负值(或正值)的数量;(iii) S 中最大的整数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Maximum Zero-Sum Partition problem

We study the Maximum Zero-Sum Partition problem (or MZSP), defined as follows: given a multiset S={a1,a2,,an} of integers aiZ (where Z denotes the set of non-zero integers) such that i=1nai=0, find a maximum cardinality partition {S1,S2,,Sk} of S such that, for every 1ik, ajSiaj=0. Solving MZSP is useful in genomics for computing evolutionary distances between pairs of species. Our contributions are a series of algorithmic results concerning MZSP, in terms of complexity, (in)approximability, with a particular focus on the fixed-parameter tractability of MZSP with respect to either (i) the size k of the solution, (ii) the number of negative (resp. positive) values in S and (iii) the largest integer in S.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Theoretical Computer Science
Theoretical Computer Science 工程技术-计算机:理论方法
CiteScore
2.60
自引率
18.20%
发文量
471
审稿时长
12.6 months
期刊介绍: Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信