Guillaume Fertin , Oscar Fontaine , Géraldine Jean , Stéphane Vialette
{"title":"最大零和分割问题","authors":"Guillaume Fertin , Oscar Fontaine , Géraldine Jean , Stéphane Vialette","doi":"10.1016/j.tcs.2024.114811","DOIUrl":null,"url":null,"abstract":"<div><p>We study the <span>Maximum Zero-Sum Partition</span> problem (or <span>MZSP</span>), defined as follows: given a multiset <span><math><mi>S</mi><mo>=</mo><mo>{</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>}</mo></math></span> of integers <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><msup><mrow><mi>Z</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> (where <span><math><msup><mrow><mi>Z</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> denotes the set of non-zero integers) such that <span><math><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>=</mo><mn>0</mn></math></span>, find a maximum cardinality partition <span><math><mo>{</mo><msub><mrow><mi>S</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>}</mo></math></span> of <span><math><mi>S</mi></math></span> such that, for every <span><math><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>k</mi></math></span>, <span><math><msub><mrow><mo>∑</mo></mrow><mrow><msub><mrow><mi>a</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>∈</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msub><msub><mrow><mi>a</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>=</mo><mn>0</mn></math></span>. Solving <span>MZSP</span> is useful in genomics for computing evolutionary distances between pairs of species. Our contributions are a series of algorithmic results concerning <span>MZSP</span>, in terms of complexity, (in)approximability, with a particular focus on the fixed-parameter tractability of <span>MZSP</span> with respect to either (i) the size <em>k</em> of the solution, (ii) the number of negative (resp. positive) values in <span><math><mi>S</mi></math></span> and (iii) the largest integer in <span><math><mi>S</mi></math></span>.</p></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1019 ","pages":"Article 114811"},"PeriodicalIF":0.9000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0304397524004286/pdfft?md5=834de52b293d98cccaa7d3d01b33ccb6&pid=1-s2.0-S0304397524004286-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The Maximum Zero-Sum Partition problem\",\"authors\":\"Guillaume Fertin , Oscar Fontaine , Géraldine Jean , Stéphane Vialette\",\"doi\":\"10.1016/j.tcs.2024.114811\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study the <span>Maximum Zero-Sum Partition</span> problem (or <span>MZSP</span>), defined as follows: given a multiset <span><math><mi>S</mi><mo>=</mo><mo>{</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>}</mo></math></span> of integers <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><msup><mrow><mi>Z</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> (where <span><math><msup><mrow><mi>Z</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> denotes the set of non-zero integers) such that <span><math><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>=</mo><mn>0</mn></math></span>, find a maximum cardinality partition <span><math><mo>{</mo><msub><mrow><mi>S</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>}</mo></math></span> of <span><math><mi>S</mi></math></span> such that, for every <span><math><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>k</mi></math></span>, <span><math><msub><mrow><mo>∑</mo></mrow><mrow><msub><mrow><mi>a</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>∈</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msub><msub><mrow><mi>a</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>=</mo><mn>0</mn></math></span>. Solving <span>MZSP</span> is useful in genomics for computing evolutionary distances between pairs of species. Our contributions are a series of algorithmic results concerning <span>MZSP</span>, in terms of complexity, (in)approximability, with a particular focus on the fixed-parameter tractability of <span>MZSP</span> with respect to either (i) the size <em>k</em> of the solution, (ii) the number of negative (resp. positive) values in <span><math><mi>S</mi></math></span> and (iii) the largest integer in <span><math><mi>S</mi></math></span>.</p></div>\",\"PeriodicalId\":49438,\"journal\":{\"name\":\"Theoretical Computer Science\",\"volume\":\"1019 \",\"pages\":\"Article 114811\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0304397524004286/pdfft?md5=834de52b293d98cccaa7d3d01b33ccb6&pid=1-s2.0-S0304397524004286-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304397524004286\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304397524004286","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
摘要
我们研究的最大零和分割问题(或 MZSP)定义如下:给定一个由整数 ai∈Z⁎ 组成的多集合 S={a1,a2,...,an}(其中 Z⁎ 表示非零整数集合),使得∑i=1nai=0,找出 S 的最大卡方分割 {S1,S2,...,Sk},使得对于每 1≤i≤k,∑aj∈Siaj=0。求解 MZSP 对基因组学中计算物种对之间的进化距离非常有用。我们的贡献是一系列有关 MZSP 的算法结果,包括复杂性、(不)近似性,特别是 MZSP 在以下方面的固定参数可操作性:(i) 解的大小 k;(ii) S 中负值(或正值)的数量;(iii) S 中最大的整数。
We study the Maximum Zero-Sum Partition problem (or MZSP), defined as follows: given a multiset of integers (where denotes the set of non-zero integers) such that , find a maximum cardinality partition of such that, for every , . Solving MZSP is useful in genomics for computing evolutionary distances between pairs of species. Our contributions are a series of algorithmic results concerning MZSP, in terms of complexity, (in)approximability, with a particular focus on the fixed-parameter tractability of MZSP with respect to either (i) the size k of the solution, (ii) the number of negative (resp. positive) values in and (iii) the largest integer in .
期刊介绍:
Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.