BO4IO: 采用贝叶斯优化方法进行不确定性量化的逆向优化

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Yen-An Lu , Wei-Shou Hu , Joel A. Paulson , Qi Zhang
{"title":"BO4IO: 采用贝叶斯优化方法进行不确定性量化的逆向优化","authors":"Yen-An Lu ,&nbsp;Wei-Shou Hu ,&nbsp;Joel A. Paulson ,&nbsp;Qi Zhang","doi":"10.1016/j.compchemeng.2024.108859","DOIUrl":null,"url":null,"abstract":"<div><p>Data-driven inverse optimization (IO) aims to estimate unknown parameters in an optimization model from observed decisions. The IO problem is commonly formulated as a large-scale bilevel program that is notoriously difficult to solve. We propose a derivative-free optimization approach based on Bayesian optimization, BO4IO, to solve general IO problems. The main advantages of BO4IO are two-fold: (i) it circumvents the need of complex reformulations or specialized algorithms and can hence enable computational tractability even when the underlying optimization problem is nonconvex or involves discrete variables, and (ii) it allows approximations of the profile likelihood, which provide uncertainty quantification on the IO parameter estimates. Our extensive computational results demonstrate the efficacy and robustness of BO4IO to estimate unknown parameters from small and noisy datasets. In addition, the proposed profile likelihood analysis effectively provides good approximations of the confidence intervals on the parameter estimates and assesses the identifiability of the unknown parameters.</p></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"192 ","pages":"Article 108859"},"PeriodicalIF":3.9000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0098135424002771/pdfft?md5=2b1fcb630ba3141652b16ea5b79fc168&pid=1-s2.0-S0098135424002771-main.pdf","citationCount":"0","resultStr":"{\"title\":\"BO4IO: A Bayesian optimization approach to inverse optimization with uncertainty quantification\",\"authors\":\"Yen-An Lu ,&nbsp;Wei-Shou Hu ,&nbsp;Joel A. Paulson ,&nbsp;Qi Zhang\",\"doi\":\"10.1016/j.compchemeng.2024.108859\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Data-driven inverse optimization (IO) aims to estimate unknown parameters in an optimization model from observed decisions. The IO problem is commonly formulated as a large-scale bilevel program that is notoriously difficult to solve. We propose a derivative-free optimization approach based on Bayesian optimization, BO4IO, to solve general IO problems. The main advantages of BO4IO are two-fold: (i) it circumvents the need of complex reformulations or specialized algorithms and can hence enable computational tractability even when the underlying optimization problem is nonconvex or involves discrete variables, and (ii) it allows approximations of the profile likelihood, which provide uncertainty quantification on the IO parameter estimates. Our extensive computational results demonstrate the efficacy and robustness of BO4IO to estimate unknown parameters from small and noisy datasets. In addition, the proposed profile likelihood analysis effectively provides good approximations of the confidence intervals on the parameter estimates and assesses the identifiability of the unknown parameters.</p></div>\",\"PeriodicalId\":286,\"journal\":{\"name\":\"Computers & Chemical Engineering\",\"volume\":\"192 \",\"pages\":\"Article 108859\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0098135424002771/pdfft?md5=2b1fcb630ba3141652b16ea5b79fc168&pid=1-s2.0-S0098135424002771-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098135424002771\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135424002771","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

数据驱动的逆向优化(IO)旨在通过观察到的决策来估计优化模型中的未知参数。IO 问题通常被表述为大规模双层程序,众所周知,这种程序很难求解。我们提出了一种基于贝叶斯优化的无导数优化方法--BO4IO,用于解决一般的 IO 问题。BO4IO 的主要优势有两个方面:(i) 它避免了复杂的重构或专门算法,因此即使底层优化问题是非凸的或涉及离散变量,也能实现计算的可操作性;(ii) 它允许对轮廓似然进行近似,从而提供 IO 参数估计的不确定性量化。我们的大量计算结果证明了 BO4IO 从小型和噪声数据集中估计未知参数的有效性和稳健性。此外,所提出的轮廓似然分析有效地提供了参数估计置信区间的良好近似值,并评估了未知参数的可识别性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BO4IO: A Bayesian optimization approach to inverse optimization with uncertainty quantification

Data-driven inverse optimization (IO) aims to estimate unknown parameters in an optimization model from observed decisions. The IO problem is commonly formulated as a large-scale bilevel program that is notoriously difficult to solve. We propose a derivative-free optimization approach based on Bayesian optimization, BO4IO, to solve general IO problems. The main advantages of BO4IO are two-fold: (i) it circumvents the need of complex reformulations or specialized algorithms and can hence enable computational tractability even when the underlying optimization problem is nonconvex or involves discrete variables, and (ii) it allows approximations of the profile likelihood, which provide uncertainty quantification on the IO parameter estimates. Our extensive computational results demonstrate the efficacy and robustness of BO4IO to estimate unknown parameters from small and noisy datasets. In addition, the proposed profile likelihood analysis effectively provides good approximations of the confidence intervals on the parameter estimates and assesses the identifiability of the unknown parameters.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信