任意方向静电场中的瑞利-泰勒不稳定性

IF 2.7 3区 数学 Q1 MATHEMATICS, APPLIED
J.J. Yao, Y.G. Cao
{"title":"任意方向静电场中的瑞利-泰勒不稳定性","authors":"J.J. Yao,&nbsp;Y.G. Cao","doi":"10.1016/j.physd.2024.134338","DOIUrl":null,"url":null,"abstract":"<div><p>Based on the potential flow theory, we carry out the nonlinear analysis for the inviscid incompressible Rayleigh–Taylor instability (RTI) in an arbitrary direction electrostatic field. The analytical expressions for the bubble amplitude and growth rate are presented. The effects of tangential and vertical electrostatic fields upon the bubble dynamics are opposite and depend on permittivity ratio. Agreements with recent simulations are found in the bubble amplitude. The direction of electrostatic field determines which (tangential or vertical) component plays the main role. The stability of the interface depends on whether the tangential and vertical components of the electrostatic field exceed the cut-off electrostatic field which is dependent of the permittivity ratio and the Atwood number. The results of this work demonstrate the importance of the direction of electrostatic field when considering the impact of electrostatic field on RTI.</p></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"470 ","pages":"Article 134338"},"PeriodicalIF":2.7000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rayleigh–Taylor instability in an arbitrary direction electrostatic field\",\"authors\":\"J.J. Yao,&nbsp;Y.G. Cao\",\"doi\":\"10.1016/j.physd.2024.134338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Based on the potential flow theory, we carry out the nonlinear analysis for the inviscid incompressible Rayleigh–Taylor instability (RTI) in an arbitrary direction electrostatic field. The analytical expressions for the bubble amplitude and growth rate are presented. The effects of tangential and vertical electrostatic fields upon the bubble dynamics are opposite and depend on permittivity ratio. Agreements with recent simulations are found in the bubble amplitude. The direction of electrostatic field determines which (tangential or vertical) component plays the main role. The stability of the interface depends on whether the tangential and vertical components of the electrostatic field exceed the cut-off electrostatic field which is dependent of the permittivity ratio and the Atwood number. The results of this work demonstrate the importance of the direction of electrostatic field when considering the impact of electrostatic field on RTI.</p></div>\",\"PeriodicalId\":20050,\"journal\":{\"name\":\"Physica D: Nonlinear Phenomena\",\"volume\":\"470 \",\"pages\":\"Article 134338\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica D: Nonlinear Phenomena\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167278924002896\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278924002896","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

基于势流理论,我们对任意方向静电场中的不粘性不可压缩雷利-泰勒不稳定性(RTI)进行了非线性分析。给出了气泡振幅和增长率的解析表达式。切向静电场和垂直静电场对气泡动力学的影响是相反的,并且取决于介电常数比。气泡振幅与最近的模拟结果一致。静电场的方向决定了哪个(切向或垂直)分量起主要作用。界面的稳定性取决于静电场的切向和垂直分量是否超过截止静电场,而截止静电场取决于介电常数比和阿特伍德数。这项工作的结果表明,在考虑静电场对 RTI 的影响时,静电场方向非常重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rayleigh–Taylor instability in an arbitrary direction electrostatic field

Based on the potential flow theory, we carry out the nonlinear analysis for the inviscid incompressible Rayleigh–Taylor instability (RTI) in an arbitrary direction electrostatic field. The analytical expressions for the bubble amplitude and growth rate are presented. The effects of tangential and vertical electrostatic fields upon the bubble dynamics are opposite and depend on permittivity ratio. Agreements with recent simulations are found in the bubble amplitude. The direction of electrostatic field determines which (tangential or vertical) component plays the main role. The stability of the interface depends on whether the tangential and vertical components of the electrostatic field exceed the cut-off electrostatic field which is dependent of the permittivity ratio and the Atwood number. The results of this work demonstrate the importance of the direction of electrostatic field when considering the impact of electrostatic field on RTI.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena 物理-物理:数学物理
CiteScore
7.30
自引率
7.50%
发文量
213
审稿时长
65 days
期刊介绍: Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信