{"title":"综合遥感和地球化学研究,加强斑岩铜矿床的勘探制图:伊朗南部乌尔米亚-多赫塔尔成矿带 Pariz 地区的案例研究","authors":"Mobin Saremi , Zohre Hoseinzade , Seyyed Ataollah Agha Seyyed Mirzabozorg , Amin Beiranvand Pour , Basem Zoheir , Alireza Almasi","doi":"10.1016/j.rsase.2024.101343","DOIUrl":null,"url":null,"abstract":"<div><p>Mapping hydrothermal alteration zones associated with porphyry copper deposits (PCDs) is crucial for identifying new exploration targets on a regional scale. Hydrothermal alteration indicator layers play a fundamental role in recognizing potential areas for PCDs, highlighting the need for precise delineation of these zones and their integration with geochemical and geological data to reduce uncertainty in mapping porphyry copper prospectivity. This study focuses on the Pariz district within the Urmia-Dokhtar Metallogenic Belt (UDMB) in southern Iran, a region known for its significant porphyry copper mineralization. First, logical operator algorithms (LOA) were applied to ASTER remote sensing data to map and distinguish argillic and phyllic alteration zones associated with PCDs. Subsequently, propylitic alteration zones associated with chlorite-epidote and propylitic alteration associated with calcite were also delineated, as were silica-rich hydrothermal alteration zones. Five evidence layers corresponding to these geologic features were generated and weighted with logistic functions, independent of expert judgment and without consideration of the spatial distribution of known mineral occurrences (KMOs). In addition, two layers of information were developed, including multivariate geochemical signatures and proximity to intrusive rocks. The geochemical analysis identified two significant factors associated with porphyry copper mineralization: Factor-I (Zn, Pb, Cu, Sn, B) and Factor-II (Mo, Cu). These factors contributed to a multivariate geochemical signature in addition to the alteration layers derived from remote sensing. Evaluation using prediction-area (P-A) plots and Normalized density index (ND) confirmed the effectiveness of all seven layers for mineral prospectivity mapping (MPM). Geometric average (GA), data-driven index overlay (IO), and deep autoencoder neural network (DEA) integrated these layers, with IO showing superior performance in identifying high potential zones, as indicated by higher prediction rates compared to other methods. Therefore, IO proves to be the most efficient approach for mapping the regional porphyry copper minerals in the Pariz district of the UDMB.</p></div>","PeriodicalId":53227,"journal":{"name":"Remote Sensing Applications-Society and Environment","volume":"36 ","pages":"Article 101343"},"PeriodicalIF":3.8000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrated remote sensing and geochemical studies for enhanced prospectivity mapping of porphyry copper deposits: A case study from the Pariz district, Urmia-Dokhtar metallogenic belt, southern Iran\",\"authors\":\"Mobin Saremi , Zohre Hoseinzade , Seyyed Ataollah Agha Seyyed Mirzabozorg , Amin Beiranvand Pour , Basem Zoheir , Alireza Almasi\",\"doi\":\"10.1016/j.rsase.2024.101343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Mapping hydrothermal alteration zones associated with porphyry copper deposits (PCDs) is crucial for identifying new exploration targets on a regional scale. Hydrothermal alteration indicator layers play a fundamental role in recognizing potential areas for PCDs, highlighting the need for precise delineation of these zones and their integration with geochemical and geological data to reduce uncertainty in mapping porphyry copper prospectivity. This study focuses on the Pariz district within the Urmia-Dokhtar Metallogenic Belt (UDMB) in southern Iran, a region known for its significant porphyry copper mineralization. First, logical operator algorithms (LOA) were applied to ASTER remote sensing data to map and distinguish argillic and phyllic alteration zones associated with PCDs. Subsequently, propylitic alteration zones associated with chlorite-epidote and propylitic alteration associated with calcite were also delineated, as were silica-rich hydrothermal alteration zones. Five evidence layers corresponding to these geologic features were generated and weighted with logistic functions, independent of expert judgment and without consideration of the spatial distribution of known mineral occurrences (KMOs). In addition, two layers of information were developed, including multivariate geochemical signatures and proximity to intrusive rocks. The geochemical analysis identified two significant factors associated with porphyry copper mineralization: Factor-I (Zn, Pb, Cu, Sn, B) and Factor-II (Mo, Cu). These factors contributed to a multivariate geochemical signature in addition to the alteration layers derived from remote sensing. Evaluation using prediction-area (P-A) plots and Normalized density index (ND) confirmed the effectiveness of all seven layers for mineral prospectivity mapping (MPM). Geometric average (GA), data-driven index overlay (IO), and deep autoencoder neural network (DEA) integrated these layers, with IO showing superior performance in identifying high potential zones, as indicated by higher prediction rates compared to other methods. Therefore, IO proves to be the most efficient approach for mapping the regional porphyry copper minerals in the Pariz district of the UDMB.</p></div>\",\"PeriodicalId\":53227,\"journal\":{\"name\":\"Remote Sensing Applications-Society and Environment\",\"volume\":\"36 \",\"pages\":\"Article 101343\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing Applications-Society and Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352938524002076\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing Applications-Society and Environment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352938524002076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Integrated remote sensing and geochemical studies for enhanced prospectivity mapping of porphyry copper deposits: A case study from the Pariz district, Urmia-Dokhtar metallogenic belt, southern Iran
Mapping hydrothermal alteration zones associated with porphyry copper deposits (PCDs) is crucial for identifying new exploration targets on a regional scale. Hydrothermal alteration indicator layers play a fundamental role in recognizing potential areas for PCDs, highlighting the need for precise delineation of these zones and their integration with geochemical and geological data to reduce uncertainty in mapping porphyry copper prospectivity. This study focuses on the Pariz district within the Urmia-Dokhtar Metallogenic Belt (UDMB) in southern Iran, a region known for its significant porphyry copper mineralization. First, logical operator algorithms (LOA) were applied to ASTER remote sensing data to map and distinguish argillic and phyllic alteration zones associated with PCDs. Subsequently, propylitic alteration zones associated with chlorite-epidote and propylitic alteration associated with calcite were also delineated, as were silica-rich hydrothermal alteration zones. Five evidence layers corresponding to these geologic features were generated and weighted with logistic functions, independent of expert judgment and without consideration of the spatial distribution of known mineral occurrences (KMOs). In addition, two layers of information were developed, including multivariate geochemical signatures and proximity to intrusive rocks. The geochemical analysis identified two significant factors associated with porphyry copper mineralization: Factor-I (Zn, Pb, Cu, Sn, B) and Factor-II (Mo, Cu). These factors contributed to a multivariate geochemical signature in addition to the alteration layers derived from remote sensing. Evaluation using prediction-area (P-A) plots and Normalized density index (ND) confirmed the effectiveness of all seven layers for mineral prospectivity mapping (MPM). Geometric average (GA), data-driven index overlay (IO), and deep autoencoder neural network (DEA) integrated these layers, with IO showing superior performance in identifying high potential zones, as indicated by higher prediction rates compared to other methods. Therefore, IO proves to be the most efficient approach for mapping the regional porphyry copper minerals in the Pariz district of the UDMB.
期刊介绍:
The journal ''Remote Sensing Applications: Society and Environment'' (RSASE) focuses on remote sensing studies that address specific topics with an emphasis on environmental and societal issues - regional / local studies with global significance. Subjects are encouraged to have an interdisciplinary approach and include, but are not limited by: " -Global and climate change studies addressing the impact of increasing concentrations of greenhouse gases, CO2 emission, carbon balance and carbon mitigation, energy system on social and environmental systems -Ecological and environmental issues including biodiversity, ecosystem dynamics, land degradation, atmospheric and water pollution, urban footprint, ecosystem management and natural hazards (e.g. earthquakes, typhoons, floods, landslides) -Natural resource studies including land-use in general, biomass estimation, forests, agricultural land, plantation, soils, coral reefs, wetland and water resources -Agriculture, food production systems and food security outcomes -Socio-economic issues including urban systems, urban growth, public health, epidemics, land-use transition and land use conflicts -Oceanography and coastal zone studies, including sea level rise projections, coastlines changes and the ocean-land interface -Regional challenges for remote sensing application techniques, monitoring and analysis, such as cloud screening and atmospheric correction for tropical regions -Interdisciplinary studies combining remote sensing, household survey data, field measurements and models to address environmental, societal and sustainability issues -Quantitative and qualitative analysis that documents the impact of using remote sensing studies in social, political, environmental or economic systems