{"title":"位错对镍钛形状记忆合金中 B19'和 R 相变的影响","authors":"Himanshu Vashishtha, David M. Collins","doi":"10.1016/j.scriptamat.2024.116365","DOIUrl":null,"url":null,"abstract":"<div><p>The ability to control the stress-induced phase transformation of the shape memory alloy, NiTi, is an important technological challenge that must be understood for their wide application in devices that can exploit their reversible strain properties. This study elucidates the direct relationship between dislocation density and the martensitic, B19' & <em>R</em>-phase transformations, including its formation temperature from interrupted annealing of rolled NiTi samples. Deformation is shown to determine the enthalpy change required for the B2→R→B19' transformation, with associated transformation temperatures being modifiable via dislocation density and recovery processes. Recovery is shown to be rapid, highly heterogeneous and sensitive to crystal orientation. Grains with a 〈100〉 direction close to the macroscopic rolling direction recover more rapidly than 〈110〉 and 〈111〉 orientated grains. Considered to be governed by processing induced residual stresses and resultant crystallographic dependent annihilation/slip pathways, there are opportunities to tune B2→R→B19' transformation on either a grain-averaged or an orientation dependant per-grain basis.</p></div>","PeriodicalId":423,"journal":{"name":"Scripta Materialia","volume":"255 ","pages":"Article 116365"},"PeriodicalIF":5.3000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1359646224004007/pdfft?md5=94d0e17b7c5a3b14697b4439bdda15b9&pid=1-s2.0-S1359646224004007-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The influence of dislocations on B19' and R-phase transformations in a NiTi shape memory alloy\",\"authors\":\"Himanshu Vashishtha, David M. Collins\",\"doi\":\"10.1016/j.scriptamat.2024.116365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The ability to control the stress-induced phase transformation of the shape memory alloy, NiTi, is an important technological challenge that must be understood for their wide application in devices that can exploit their reversible strain properties. This study elucidates the direct relationship between dislocation density and the martensitic, B19' & <em>R</em>-phase transformations, including its formation temperature from interrupted annealing of rolled NiTi samples. Deformation is shown to determine the enthalpy change required for the B2→R→B19' transformation, with associated transformation temperatures being modifiable via dislocation density and recovery processes. Recovery is shown to be rapid, highly heterogeneous and sensitive to crystal orientation. Grains with a 〈100〉 direction close to the macroscopic rolling direction recover more rapidly than 〈110〉 and 〈111〉 orientated grains. Considered to be governed by processing induced residual stresses and resultant crystallographic dependent annihilation/slip pathways, there are opportunities to tune B2→R→B19' transformation on either a grain-averaged or an orientation dependant per-grain basis.</p></div>\",\"PeriodicalId\":423,\"journal\":{\"name\":\"Scripta Materialia\",\"volume\":\"255 \",\"pages\":\"Article 116365\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1359646224004007/pdfft?md5=94d0e17b7c5a3b14697b4439bdda15b9&pid=1-s2.0-S1359646224004007-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scripta Materialia\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359646224004007\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scripta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359646224004007","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
控制形状记忆合金镍钛的应力诱导相变的能力是一项重要的技术挑战,要想将其广泛应用于可利用其可逆应变特性的设备中,就必须了解这一挑战。本研究阐明了位错密度与马氏体 B19' & R 相变之间的直接关系,包括轧制镍钛样品间断退火的形成温度。变形决定了 B2→R→B19' 转变所需的焓变,相关转变温度可通过位错密度和恢复过程进行调节。复原过程是快速、高度异质和对晶体取向敏感的。方向接近宏观轧制方向的〈100〉晶粒比〈110〉和〈111〉取向的晶粒恢复得更快。考虑到受加工诱导的残余应力和由此产生的晶体学相关湮灭/滑动路径的支配,有机会在晶粒平均或取向相关的每个晶粒基础上调整 B2→R→B19' 转变。
The influence of dislocations on B19' and R-phase transformations in a NiTi shape memory alloy
The ability to control the stress-induced phase transformation of the shape memory alloy, NiTi, is an important technological challenge that must be understood for their wide application in devices that can exploit their reversible strain properties. This study elucidates the direct relationship between dislocation density and the martensitic, B19' & R-phase transformations, including its formation temperature from interrupted annealing of rolled NiTi samples. Deformation is shown to determine the enthalpy change required for the B2→R→B19' transformation, with associated transformation temperatures being modifiable via dislocation density and recovery processes. Recovery is shown to be rapid, highly heterogeneous and sensitive to crystal orientation. Grains with a 〈100〉 direction close to the macroscopic rolling direction recover more rapidly than 〈110〉 and 〈111〉 orientated grains. Considered to be governed by processing induced residual stresses and resultant crystallographic dependent annihilation/slip pathways, there are opportunities to tune B2→R→B19' transformation on either a grain-averaged or an orientation dependant per-grain basis.
期刊介绍:
Scripta Materialia is a LETTERS journal of Acta Materialia, providing a forum for the rapid publication of short communications on the relationship between the structure and the properties of inorganic materials. The emphasis is on originality rather than incremental research. Short reports on the development of materials with novel or substantially improved properties are also welcomed. Emphasis is on either the functional or mechanical behavior of metals, ceramics and semiconductors at all length scales.