在 COVID-19 期间,不同性别者面临更多的健康挑战:利用自然语言处理的大规模社交媒体分析

Health data science Pub Date : 2024-09-06 eCollection Date: 2024-01-01 DOI:10.34133/hds.0127
Zhiyun Zhang, Yining Hua, Peilin Zhou, Shixu Lin, Minghui Li, Yujie Zhang, Li Zhou, Yanhui Liao, Jie Yang
{"title":"在 COVID-19 期间,不同性别者面临更多的健康挑战:利用自然语言处理的大规模社交媒体分析","authors":"Zhiyun Zhang, Yining Hua, Peilin Zhou, Shixu Lin, Minghui Li, Yujie Zhang, Li Zhou, Yanhui Liao, Jie Yang","doi":"10.34133/hds.0127","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> The COVID-19 pandemic has caused a disproportionate impact on the sexual and gender-diverse (SGD) community. Compared with non-SGD populations, their social relations and health status are more vulnerable, whereas public health data regarding SGD are scarce. <b>Methods:</b> To analyze the concerns and health status of SGD individuals, this cohort study leveraged 471,371,477 tweets from 251,455 SGD and 22,644,411 non-SGD users, spanning from 2020 February 1 to 2022 April 30. The outcome measures comprised the distribution and dynamics of COVID-related topics, attitudes toward vaccines, and the prevalence of symptoms. <b>Results:</b> Topic analysis revealed that SGD users engaged more frequently in discussions related to \"friends and family\" (20.5% vs. 13.1%, <i>P</i> < 0.001) and \"wear masks\" (10.1% vs. 8.3%, <i>P</i> < 0.001) compared to non-SGD users. Additionally, SGD users exhibited a marked higher proportion of positive sentiment in tweets about vaccines, including Moderna, Pfizer, AstraZeneca, and Johnson & Johnson. Among 102,464 users who self-reported COVID-19 diagnoses, SGD users disclosed significantly higher frequencies of mentioning 61 out of 69 COVID-related symptoms than non-SGD users, encompassing both physical and mental health challenges. <b>Conclusion:</b> The results provide insights into an understanding of the unique needs and experiences of the SGD community during the pandemic, emphasizing the value of social media data in epidemiological and public health research.</p>","PeriodicalId":73207,"journal":{"name":"Health data science","volume":"4 ","pages":"0127"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11378377/pdf/","citationCount":"0","resultStr":"{\"title\":\"Sexual and Gender-Diverse Individuals Face More Health Challenges during COVID-19: A Large-Scale Social Media Analysis with Natural Language Processing.\",\"authors\":\"Zhiyun Zhang, Yining Hua, Peilin Zhou, Shixu Lin, Minghui Li, Yujie Zhang, Li Zhou, Yanhui Liao, Jie Yang\",\"doi\":\"10.34133/hds.0127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Background:</b> The COVID-19 pandemic has caused a disproportionate impact on the sexual and gender-diverse (SGD) community. Compared with non-SGD populations, their social relations and health status are more vulnerable, whereas public health data regarding SGD are scarce. <b>Methods:</b> To analyze the concerns and health status of SGD individuals, this cohort study leveraged 471,371,477 tweets from 251,455 SGD and 22,644,411 non-SGD users, spanning from 2020 February 1 to 2022 April 30. The outcome measures comprised the distribution and dynamics of COVID-related topics, attitudes toward vaccines, and the prevalence of symptoms. <b>Results:</b> Topic analysis revealed that SGD users engaged more frequently in discussions related to \\\"friends and family\\\" (20.5% vs. 13.1%, <i>P</i> < 0.001) and \\\"wear masks\\\" (10.1% vs. 8.3%, <i>P</i> < 0.001) compared to non-SGD users. Additionally, SGD users exhibited a marked higher proportion of positive sentiment in tweets about vaccines, including Moderna, Pfizer, AstraZeneca, and Johnson & Johnson. Among 102,464 users who self-reported COVID-19 diagnoses, SGD users disclosed significantly higher frequencies of mentioning 61 out of 69 COVID-related symptoms than non-SGD users, encompassing both physical and mental health challenges. <b>Conclusion:</b> The results provide insights into an understanding of the unique needs and experiences of the SGD community during the pandemic, emphasizing the value of social media data in epidemiological and public health research.</p>\",\"PeriodicalId\":73207,\"journal\":{\"name\":\"Health data science\",\"volume\":\"4 \",\"pages\":\"0127\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11378377/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Health data science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34133/hds.0127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health data science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/hds.0127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:COVID-19 大流行对性与性别多元化(SGD)群体造成了极大的影响。与非 SGD 群体相比,他们的社会关系和健康状况更加脆弱,而有关 SGD 的公共卫生数据却很少。研究方法为了分析 SGD 个人的关注点和健康状况,这项队列研究利用了来自 251,455 名 SGD 用户和 22,644,411 名非 SGD 用户的 471,371,477 条推文,时间跨度为 2020 年 2 月 1 日至 2022 年 4 月 30 日。结果测量包括 COVID 相关话题的分布和动态、对疫苗的态度以及症状的流行程度。结果:话题分析表明,与非 SGD 用户相比,SGD 用户更频繁地参与有关 "朋友和家人"(20.5% 对 13.1%,P < 0.001)和 "戴口罩"(10.1% 对 8.3%,P < 0.001)的讨论。此外,SGD 用户在有关疫苗的推文中表现出的积极情绪比例明显更高,其中包括 Moderna、辉瑞、阿斯利康和强生。在 102,464 名自我报告了 COVID-19 诊断的用户中,SGD 用户披露的 69 种 COVID 相关症状中有 61 种症状的提及频率明显高于非 SGD 用户,其中包括身体和心理健康方面的挑战。结论研究结果有助于了解 SGD 群体在大流行期间的独特需求和经历,强调了社交媒体数据在流行病学和公共卫生研究中的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sexual and Gender-Diverse Individuals Face More Health Challenges during COVID-19: A Large-Scale Social Media Analysis with Natural Language Processing.

Background: The COVID-19 pandemic has caused a disproportionate impact on the sexual and gender-diverse (SGD) community. Compared with non-SGD populations, their social relations and health status are more vulnerable, whereas public health data regarding SGD are scarce. Methods: To analyze the concerns and health status of SGD individuals, this cohort study leveraged 471,371,477 tweets from 251,455 SGD and 22,644,411 non-SGD users, spanning from 2020 February 1 to 2022 April 30. The outcome measures comprised the distribution and dynamics of COVID-related topics, attitudes toward vaccines, and the prevalence of symptoms. Results: Topic analysis revealed that SGD users engaged more frequently in discussions related to "friends and family" (20.5% vs. 13.1%, P < 0.001) and "wear masks" (10.1% vs. 8.3%, P < 0.001) compared to non-SGD users. Additionally, SGD users exhibited a marked higher proportion of positive sentiment in tweets about vaccines, including Moderna, Pfizer, AstraZeneca, and Johnson & Johnson. Among 102,464 users who self-reported COVID-19 diagnoses, SGD users disclosed significantly higher frequencies of mentioning 61 out of 69 COVID-related symptoms than non-SGD users, encompassing both physical and mental health challenges. Conclusion: The results provide insights into an understanding of the unique needs and experiences of the SGD community during the pandemic, emphasizing the value of social media data in epidemiological and public health research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信