{"title":"类似希比安的学习规则能否避免稀疏分布式数据中的维度诅咒?","authors":"Maria Osório, Luis Sa-Couto, Andreas Wichert","doi":"10.1007/s00422-024-00995-y","DOIUrl":null,"url":null,"abstract":"<p><p>It is generally assumed that the brain uses something akin to sparse distributed representations. These representations, however, are high-dimensional and consequently they affect classification performance of traditional Machine Learning models due to the \"curse of dimensionality\". In tasks for which there is a vast amount of labeled data, Deep Networks seem to solve this issue with many layers and a non-Hebbian backpropagation algorithm. The brain, however, seems to be able to solve the problem with few layers. In this work, we hypothesize that this happens by using Hebbian learning. Actually, the Hebbian-like learning rule of Restricted Boltzmann Machines learns the input patterns asymmetrically. It exclusively learns the correlation between non-zero values and ignores the zeros, which represent the vast majority of the input dimensionality. By ignoring the zeros the \"curse of dimensionality\" problem can be avoided. To test our hypothesis, we generated several sparse datasets and compared the performance of a Restricted Boltzmann Machine classifier with some Backprop-trained networks. The experiments using these codes confirm our initial intuition as the Restricted Boltzmann Machine shows a good generalization performance, while the Neural Networks trained with the backpropagation algorithm overfit the training data.</p>","PeriodicalId":55374,"journal":{"name":"Biological Cybernetics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Can a Hebbian-like learning rule be avoiding the curse of dimensionality in sparse distributed data?\",\"authors\":\"Maria Osório, Luis Sa-Couto, Andreas Wichert\",\"doi\":\"10.1007/s00422-024-00995-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>It is generally assumed that the brain uses something akin to sparse distributed representations. These representations, however, are high-dimensional and consequently they affect classification performance of traditional Machine Learning models due to the \\\"curse of dimensionality\\\". In tasks for which there is a vast amount of labeled data, Deep Networks seem to solve this issue with many layers and a non-Hebbian backpropagation algorithm. The brain, however, seems to be able to solve the problem with few layers. In this work, we hypothesize that this happens by using Hebbian learning. Actually, the Hebbian-like learning rule of Restricted Boltzmann Machines learns the input patterns asymmetrically. It exclusively learns the correlation between non-zero values and ignores the zeros, which represent the vast majority of the input dimensionality. By ignoring the zeros the \\\"curse of dimensionality\\\" problem can be avoided. To test our hypothesis, we generated several sparse datasets and compared the performance of a Restricted Boltzmann Machine classifier with some Backprop-trained networks. The experiments using these codes confirm our initial intuition as the Restricted Boltzmann Machine shows a good generalization performance, while the Neural Networks trained with the backpropagation algorithm overfit the training data.</p>\",\"PeriodicalId\":55374,\"journal\":{\"name\":\"Biological Cybernetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Cybernetics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00422-024-00995-y\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, CYBERNETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Cybernetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00422-024-00995-y","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
Can a Hebbian-like learning rule be avoiding the curse of dimensionality in sparse distributed data?
It is generally assumed that the brain uses something akin to sparse distributed representations. These representations, however, are high-dimensional and consequently they affect classification performance of traditional Machine Learning models due to the "curse of dimensionality". In tasks for which there is a vast amount of labeled data, Deep Networks seem to solve this issue with many layers and a non-Hebbian backpropagation algorithm. The brain, however, seems to be able to solve the problem with few layers. In this work, we hypothesize that this happens by using Hebbian learning. Actually, the Hebbian-like learning rule of Restricted Boltzmann Machines learns the input patterns asymmetrically. It exclusively learns the correlation between non-zero values and ignores the zeros, which represent the vast majority of the input dimensionality. By ignoring the zeros the "curse of dimensionality" problem can be avoided. To test our hypothesis, we generated several sparse datasets and compared the performance of a Restricted Boltzmann Machine classifier with some Backprop-trained networks. The experiments using these codes confirm our initial intuition as the Restricted Boltzmann Machine shows a good generalization performance, while the Neural Networks trained with the backpropagation algorithm overfit the training data.
期刊介绍:
Biological Cybernetics is an interdisciplinary medium for theoretical and application-oriented aspects of information processing in organisms, including sensory, motor, cognitive, and ecological phenomena. Topics covered include: mathematical modeling of biological systems; computational, theoretical or engineering studies with relevance for understanding biological information processing; and artificial implementation of biological information processing and self-organizing principles. Under the main aspects of performance and function of systems, emphasis is laid on communication between life sciences and technical/theoretical disciplines.