Robin R Austin, Ratchada Jantraporn, Martin Michalowski, Jenna Marquard
{"title":"用机器学习方法发现健康老龄化的幸福感和复原力的隐藏模式。","authors":"Robin R Austin, Ratchada Jantraporn, Martin Michalowski, Jenna Marquard","doi":"10.1111/jnu.13025","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>A whole person approach to healthy aging can provide insight into social factors that may be critical. Digital technologies, such as mobile health (mHealth) applications, hold promise to provide novel insights for healthy aging and the ability to collect data between clinical care visits. Machine learning/artificial intelligence methods have the potential to uncover insights into healthy aging. Nurses and nurse informaticians have a unique lens to shape the future use of this technology.</p><p><strong>Methods: </strong>The purpose of this research was to apply machine learning methods to MyStrengths+MyHealth de-identified data (N = 988) for adults 45 years of age and older. An exploratory data analysis process guided this work.</p><p><strong>Results: </strong>Overall (n = 988), the average Strength was 66.1% (SD = 5.1), average Challenges 66.5% (SD = 7.5), and average Needs 60.06% (SD = 3.1). There was a significant difference between Strengths and Needs (p < 0.001), between Challenges and Needs (p < 0.001), and no significant differences between average Strengths and Challenges. Four concept groups were identified from the data (Thinking, Moving, Emotions, and Sleeping). The Thinking group had the most statistically significant challenges (11) associated with having at least one Thinking Challenge and the highest average Strengths (66.5%) and Needs (83.6%) compared to the other groups.</p><p><strong>Conclusion: </strong>This retrospective analysis applied machine learning methods to de-identified whole person health resilience data from the MSMH application. Adults 45 and older had many Strengths despite numerous Challenges and Needs. The Thinking group had the highest Strengths, Challenges, and Needs, which aligns with the literature and highlights the co-occurring health challenges experienced by this group. Machine learning methods applied to consumer health data identify unique insights applicable to specific conditions (e.g., cognitive) and healthy aging. The next steps involve testing personalized interventions with nurses leading artificial intelligence integration into clinical care.</p>","PeriodicalId":51091,"journal":{"name":"Journal of Nursing Scholarship","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning methods to discover hidden patterns in well-being and resilience for healthy aging.\",\"authors\":\"Robin R Austin, Ratchada Jantraporn, Martin Michalowski, Jenna Marquard\",\"doi\":\"10.1111/jnu.13025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>A whole person approach to healthy aging can provide insight into social factors that may be critical. Digital technologies, such as mobile health (mHealth) applications, hold promise to provide novel insights for healthy aging and the ability to collect data between clinical care visits. Machine learning/artificial intelligence methods have the potential to uncover insights into healthy aging. Nurses and nurse informaticians have a unique lens to shape the future use of this technology.</p><p><strong>Methods: </strong>The purpose of this research was to apply machine learning methods to MyStrengths+MyHealth de-identified data (N = 988) for adults 45 years of age and older. An exploratory data analysis process guided this work.</p><p><strong>Results: </strong>Overall (n = 988), the average Strength was 66.1% (SD = 5.1), average Challenges 66.5% (SD = 7.5), and average Needs 60.06% (SD = 3.1). There was a significant difference between Strengths and Needs (p < 0.001), between Challenges and Needs (p < 0.001), and no significant differences between average Strengths and Challenges. Four concept groups were identified from the data (Thinking, Moving, Emotions, and Sleeping). The Thinking group had the most statistically significant challenges (11) associated with having at least one Thinking Challenge and the highest average Strengths (66.5%) and Needs (83.6%) compared to the other groups.</p><p><strong>Conclusion: </strong>This retrospective analysis applied machine learning methods to de-identified whole person health resilience data from the MSMH application. Adults 45 and older had many Strengths despite numerous Challenges and Needs. The Thinking group had the highest Strengths, Challenges, and Needs, which aligns with the literature and highlights the co-occurring health challenges experienced by this group. Machine learning methods applied to consumer health data identify unique insights applicable to specific conditions (e.g., cognitive) and healthy aging. The next steps involve testing personalized interventions with nurses leading artificial intelligence integration into clinical care.</p>\",\"PeriodicalId\":51091,\"journal\":{\"name\":\"Journal of Nursing Scholarship\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nursing Scholarship\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/jnu.13025\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NURSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nursing Scholarship","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/jnu.13025","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NURSING","Score":null,"Total":0}
Machine learning methods to discover hidden patterns in well-being and resilience for healthy aging.
Background: A whole person approach to healthy aging can provide insight into social factors that may be critical. Digital technologies, such as mobile health (mHealth) applications, hold promise to provide novel insights for healthy aging and the ability to collect data between clinical care visits. Machine learning/artificial intelligence methods have the potential to uncover insights into healthy aging. Nurses and nurse informaticians have a unique lens to shape the future use of this technology.
Methods: The purpose of this research was to apply machine learning methods to MyStrengths+MyHealth de-identified data (N = 988) for adults 45 years of age and older. An exploratory data analysis process guided this work.
Results: Overall (n = 988), the average Strength was 66.1% (SD = 5.1), average Challenges 66.5% (SD = 7.5), and average Needs 60.06% (SD = 3.1). There was a significant difference between Strengths and Needs (p < 0.001), between Challenges and Needs (p < 0.001), and no significant differences between average Strengths and Challenges. Four concept groups were identified from the data (Thinking, Moving, Emotions, and Sleeping). The Thinking group had the most statistically significant challenges (11) associated with having at least one Thinking Challenge and the highest average Strengths (66.5%) and Needs (83.6%) compared to the other groups.
Conclusion: This retrospective analysis applied machine learning methods to de-identified whole person health resilience data from the MSMH application. Adults 45 and older had many Strengths despite numerous Challenges and Needs. The Thinking group had the highest Strengths, Challenges, and Needs, which aligns with the literature and highlights the co-occurring health challenges experienced by this group. Machine learning methods applied to consumer health data identify unique insights applicable to specific conditions (e.g., cognitive) and healthy aging. The next steps involve testing personalized interventions with nurses leading artificial intelligence integration into clinical care.
期刊介绍:
This widely read and respected journal features peer-reviewed, thought-provoking articles representing research by some of the world’s leading nurse researchers.
Reaching health professionals, faculty and students in 103 countries, the Journal of Nursing Scholarship is focused on health of people throughout the world. It is the official journal of Sigma Theta Tau International and it reflects the society’s dedication to providing the tools necessary to improve nursing care around the world.