育雏寄生虫大脑中的不同神经节点是由物种和激素决定的。

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Fernanda G. Duque, Asma Azam, Amanpreet Kaur, Rachel Pao, Kathleen S. Lynch
{"title":"育雏寄生虫大脑中的不同神经节点是由物种和激素决定的。","authors":"Fernanda G. Duque,&nbsp;Asma Azam,&nbsp;Amanpreet Kaur,&nbsp;Rachel Pao,&nbsp;Kathleen S. Lynch","doi":"10.1111/gbb.12907","DOIUrl":null,"url":null,"abstract":"<p>Avian brood parasitism is an evolutionarily derived behavior for which the neurobiological mechanisms are mostly unexplored. We aimed to identify brain regions that have diverged in the brood-parasitic brain using relative transcript abundance of social neuropeptides and receptors. We compared behavioral responses and transcript abundance in three brain regions in the brown-headed cowbird (BHCO), a brood parasite, and a closely related parental species, the red-winged blackbird (RWBL). Females of both species were treated with mesotocin (MT; avian homolog of oxytocin) or saline prior to exposure to nest stimuli. Results reveal that MT promotes approach toward nests with eggs rather than nests with begging nestlings in both species. We also examined relative transcript abundance of the five social neuropeptides and receptors in the brain regions examined: preoptic area (POA), paraventricular nucleus (PVN) and bed nucleus of the stria terminalis (BST). We found that MT-treated cowbirds but not blackbirds exhibited lower transcript abundance for two receptors, corticotropin-releasing factor 2 (CRFR2) and prolactin receptor (PRLR) in BST. Additionally, MT-treated cowbirds had higher PRLR in POA, comparable to those found in blackbirds, regardless of treatment. No other transcripts of interest exhibited significant differences as a result of MT treatment, but we found a significant effect of species in the three regions. Together, these results indicate that POA, PVN, and BST represent neural nodes that have diverged in avian brood parasites and may serve as neural substrates of brood-parasitic behavior.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gbb.12907","citationCount":"0","resultStr":"{\"title\":\"Divergent neural nodes are species- and hormone-dependent in the brood parasitic brain\",\"authors\":\"Fernanda G. Duque,&nbsp;Asma Azam,&nbsp;Amanpreet Kaur,&nbsp;Rachel Pao,&nbsp;Kathleen S. Lynch\",\"doi\":\"10.1111/gbb.12907\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Avian brood parasitism is an evolutionarily derived behavior for which the neurobiological mechanisms are mostly unexplored. We aimed to identify brain regions that have diverged in the brood-parasitic brain using relative transcript abundance of social neuropeptides and receptors. We compared behavioral responses and transcript abundance in three brain regions in the brown-headed cowbird (BHCO), a brood parasite, and a closely related parental species, the red-winged blackbird (RWBL). Females of both species were treated with mesotocin (MT; avian homolog of oxytocin) or saline prior to exposure to nest stimuli. Results reveal that MT promotes approach toward nests with eggs rather than nests with begging nestlings in both species. We also examined relative transcript abundance of the five social neuropeptides and receptors in the brain regions examined: preoptic area (POA), paraventricular nucleus (PVN) and bed nucleus of the stria terminalis (BST). We found that MT-treated cowbirds but not blackbirds exhibited lower transcript abundance for two receptors, corticotropin-releasing factor 2 (CRFR2) and prolactin receptor (PRLR) in BST. Additionally, MT-treated cowbirds had higher PRLR in POA, comparable to those found in blackbirds, regardless of treatment. No other transcripts of interest exhibited significant differences as a result of MT treatment, but we found a significant effect of species in the three regions. Together, these results indicate that POA, PVN, and BST represent neural nodes that have diverged in avian brood parasites and may serve as neural substrates of brood-parasitic behavior.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gbb.12907\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/gbb.12907\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"102","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gbb.12907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

鸟类的育雏寄生行为是一种进化衍生行为,其神经生物学机制大多尚未被探索。我们的目的是利用社会性神经肽和受体的相对转录本丰度来识别育雏寄生脑中发生分化的脑区。我们比较了作为育雏寄生虫的棕头牛鸝(BHCO)和亲缘关系较近的红翅乌鸫(RWBL)三个脑区的行为反应和转录本丰度。这两种鸟的雌鸟在受到巢穴刺激之前都接受了间叶催产素(MT;鸟类催产素的同源物)或生理盐水的治疗。结果显示,MT能促进两种鸟接近有卵的巢,而不是有雏鸟乞讨的巢。我们还检测了视前区(POA)、室旁核(PVN)和纹状体末端床核(BST)等脑区中五种社会性神经肽和受体的相对转录本丰度。我们发现,经 MT 处理的牛鸟(而非黑鸟)表现出 BST 中促肾上腺皮质激素释放因子 2(CRFR2)和催乳素受体(PRLR)这两种受体的转录本丰度较低。此外,经 MT 处理的牛鸟在 POA 中的 PRLR 值较高,与黑鸟中发现的 PRLR 值相当,与处理方式无关。其他感兴趣的转录本没有因 MT 处理而表现出显著差异,但我们在三个区域发现了物种的显著影响。这些结果表明,POA、PVN 和 BST 代表了鸟类育雏寄生虫中发生分化的神经节点,可能是育雏寄生行为的神经基质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Divergent neural nodes are species- and hormone-dependent in the brood parasitic brain

Divergent neural nodes are species- and hormone-dependent in the brood parasitic brain

Avian brood parasitism is an evolutionarily derived behavior for which the neurobiological mechanisms are mostly unexplored. We aimed to identify brain regions that have diverged in the brood-parasitic brain using relative transcript abundance of social neuropeptides and receptors. We compared behavioral responses and transcript abundance in three brain regions in the brown-headed cowbird (BHCO), a brood parasite, and a closely related parental species, the red-winged blackbird (RWBL). Females of both species were treated with mesotocin (MT; avian homolog of oxytocin) or saline prior to exposure to nest stimuli. Results reveal that MT promotes approach toward nests with eggs rather than nests with begging nestlings in both species. We also examined relative transcript abundance of the five social neuropeptides and receptors in the brain regions examined: preoptic area (POA), paraventricular nucleus (PVN) and bed nucleus of the stria terminalis (BST). We found that MT-treated cowbirds but not blackbirds exhibited lower transcript abundance for two receptors, corticotropin-releasing factor 2 (CRFR2) and prolactin receptor (PRLR) in BST. Additionally, MT-treated cowbirds had higher PRLR in POA, comparable to those found in blackbirds, regardless of treatment. No other transcripts of interest exhibited significant differences as a result of MT treatment, but we found a significant effect of species in the three regions. Together, these results indicate that POA, PVN, and BST represent neural nodes that have diverged in avian brood parasites and may serve as neural substrates of brood-parasitic behavior.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信