{"title":"萌芽前除草剂嗪草酮的除草活性及其对土壤生态的潜在风险:pH 值、酶活性和细菌群落。","authors":"Haiyan Yu, Hailan Cui, Jingchao Chen, Xiangju Li","doi":"10.1186/s40793-024-00608-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The herbicide cinmethylin, which was originally registered for use in rice fields, has the potential to control grass weeds in wheat fields before the emergence of wheat. However, its herbicidal activity against various troublesome grass weeds that infest wheat fields in China and its relationships with soil pH, soil enzymes and soil bacteria are not well known. Here, the effects of applying cinmethylin on the soil surface were tested on six grass weeds, and its impacts on soil characteristics, including the soil pH, soil enzymes and bacterial community, were evaluated.</p><p><strong>Results: </strong>Alopecurus aequalis, A. japonicus and A. myosuroides were highly sensitive to cinmethylin, with GR<sub>50</sub> values of 78.77, 61.49 and 119.67 g a.i. ha<sup>- 1</sup>, respectively. The half-lives of cinmethylin at 1-, 10- and 100-fold the recommended rates were estimated at 26.46 - 52.33 d. Cinmethylin significantly increased the soil pH but decreased the activities of soil sucrase and urease. At 10- and 100-fold the recommended rate of cinmethylin, the bacterial abundance and diversity significantly decreased at 30 and 60 days after cinmethylin treatment. Cinmethylin at 100-fold the recommended rates largely promoted bacterial co-occurrence network complexity. Cinmethylin at high concentrations temporarily inhibited the abundance of the Nitrospira genus, as indicated by the copy numbers of the ammonia-oxidising archaea (AOA) amoA and ammonia-oxidising bacteria (AOB) amoA genes. Further analysis revealed that soil pH was negatively related to soil urease, and a significantly positive correlation was detected between soil urease and soil nitrification.</p><p><strong>Conclusion: </strong>Collectively, the application of cinmethylin at the recommended field dose had nearly no effect on the soil ecosystem, but its potential risks at high concentrations deserve further attention.</p>","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":null,"pages":null},"PeriodicalIF":6.2000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11382390/pdf/","citationCount":"0","resultStr":"{\"title\":\"The herbicidal activity of pre-emergence herbicide cinmethylin and its potential risks on soil ecology: pH, enzyme activities and bacterial community.\",\"authors\":\"Haiyan Yu, Hailan Cui, Jingchao Chen, Xiangju Li\",\"doi\":\"10.1186/s40793-024-00608-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The herbicide cinmethylin, which was originally registered for use in rice fields, has the potential to control grass weeds in wheat fields before the emergence of wheat. However, its herbicidal activity against various troublesome grass weeds that infest wheat fields in China and its relationships with soil pH, soil enzymes and soil bacteria are not well known. Here, the effects of applying cinmethylin on the soil surface were tested on six grass weeds, and its impacts on soil characteristics, including the soil pH, soil enzymes and bacterial community, were evaluated.</p><p><strong>Results: </strong>Alopecurus aequalis, A. japonicus and A. myosuroides were highly sensitive to cinmethylin, with GR<sub>50</sub> values of 78.77, 61.49 and 119.67 g a.i. ha<sup>- 1</sup>, respectively. The half-lives of cinmethylin at 1-, 10- and 100-fold the recommended rates were estimated at 26.46 - 52.33 d. Cinmethylin significantly increased the soil pH but decreased the activities of soil sucrase and urease. At 10- and 100-fold the recommended rate of cinmethylin, the bacterial abundance and diversity significantly decreased at 30 and 60 days after cinmethylin treatment. Cinmethylin at 100-fold the recommended rates largely promoted bacterial co-occurrence network complexity. Cinmethylin at high concentrations temporarily inhibited the abundance of the Nitrospira genus, as indicated by the copy numbers of the ammonia-oxidising archaea (AOA) amoA and ammonia-oxidising bacteria (AOB) amoA genes. Further analysis revealed that soil pH was negatively related to soil urease, and a significantly positive correlation was detected between soil urease and soil nitrification.</p><p><strong>Conclusion: </strong>Collectively, the application of cinmethylin at the recommended field dose had nearly no effect on the soil ecosystem, but its potential risks at high concentrations deserve further attention.</p>\",\"PeriodicalId\":48553,\"journal\":{\"name\":\"Environmental Microbiome\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11382390/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Microbiome\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1186/s40793-024-00608-y\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Microbiome","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1186/s40793-024-00608-y","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
The herbicidal activity of pre-emergence herbicide cinmethylin and its potential risks on soil ecology: pH, enzyme activities and bacterial community.
Background: The herbicide cinmethylin, which was originally registered for use in rice fields, has the potential to control grass weeds in wheat fields before the emergence of wheat. However, its herbicidal activity against various troublesome grass weeds that infest wheat fields in China and its relationships with soil pH, soil enzymes and soil bacteria are not well known. Here, the effects of applying cinmethylin on the soil surface were tested on six grass weeds, and its impacts on soil characteristics, including the soil pH, soil enzymes and bacterial community, were evaluated.
Results: Alopecurus aequalis, A. japonicus and A. myosuroides were highly sensitive to cinmethylin, with GR50 values of 78.77, 61.49 and 119.67 g a.i. ha- 1, respectively. The half-lives of cinmethylin at 1-, 10- and 100-fold the recommended rates were estimated at 26.46 - 52.33 d. Cinmethylin significantly increased the soil pH but decreased the activities of soil sucrase and urease. At 10- and 100-fold the recommended rate of cinmethylin, the bacterial abundance and diversity significantly decreased at 30 and 60 days after cinmethylin treatment. Cinmethylin at 100-fold the recommended rates largely promoted bacterial co-occurrence network complexity. Cinmethylin at high concentrations temporarily inhibited the abundance of the Nitrospira genus, as indicated by the copy numbers of the ammonia-oxidising archaea (AOA) amoA and ammonia-oxidising bacteria (AOB) amoA genes. Further analysis revealed that soil pH was negatively related to soil urease, and a significantly positive correlation was detected between soil urease and soil nitrification.
Conclusion: Collectively, the application of cinmethylin at the recommended field dose had nearly no effect on the soil ecosystem, but its potential risks at high concentrations deserve further attention.
期刊介绍:
Microorganisms, omnipresent across Earth's diverse environments, play a crucial role in adapting to external changes, influencing Earth's systems and cycles, and contributing significantly to agricultural practices. Through applied microbiology, they offer solutions to various everyday needs. Environmental Microbiome recognizes the universal presence and significance of microorganisms, inviting submissions that explore the diverse facets of environmental and applied microbiological research.