功能主成分分析作为混合效应模型的替代方法,用于描述缺失数据情况下的稀疏重复测量。

IF 1.8 4区 医学 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Statistics in Medicine Pub Date : 2024-11-20 Epub Date: 2024-09-09 DOI:10.1002/sim.10214
Corentin Ségalas, Catherine Helmer, Robin Genuer, Cécile Proust-Lima
{"title":"功能主成分分析作为混合效应模型的替代方法,用于描述缺失数据情况下的稀疏重复测量。","authors":"Corentin Ségalas, Catherine Helmer, Robin Genuer, Cécile Proust-Lima","doi":"10.1002/sim.10214","DOIUrl":null,"url":null,"abstract":"<p><p>Analyzing longitudinal data in health studies is challenging due to sparse and error-prone measurements, strong within-individual correlation, missing data and various trajectory shapes. While mixed-effect models (MM) effectively address these challenges, they remain parametric models and may incur computational costs. In contrast, functional principal component analysis (FPCA) is a non-parametric approach developed for regular and dense functional data that flexibly describes temporal trajectories at a potentially lower computational cost. This article presents an empirical simulation study evaluating the behavior of FPCA with sparse and error-prone repeated measures and its robustness under different missing data schemes in comparison with MM. The results show that FPCA is well-suited in the presence of missing at random data caused by dropout, except in scenarios involving most frequent and systematic dropout. Like MM, FPCA fails under missing not at random mechanism. The FPCA was applied to describe the trajectories of four cognitive functions before clinical dementia and contrast them with those of matched controls in a case-control study nested in a population-based aging cohort. The average cognitive declines of future dementia cases showed a sudden divergence from those of their matched controls with a sharp acceleration 5 to 2.5 years prior to diagnosis.</p>","PeriodicalId":21879,"journal":{"name":"Statistics in Medicine","volume":" ","pages":"4899-4912"},"PeriodicalIF":1.8000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Functional Principal Component Analysis as an Alternative to Mixed-Effect Models for Describing Sparse Repeated Measures in Presence of Missing Data.\",\"authors\":\"Corentin Ségalas, Catherine Helmer, Robin Genuer, Cécile Proust-Lima\",\"doi\":\"10.1002/sim.10214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Analyzing longitudinal data in health studies is challenging due to sparse and error-prone measurements, strong within-individual correlation, missing data and various trajectory shapes. While mixed-effect models (MM) effectively address these challenges, they remain parametric models and may incur computational costs. In contrast, functional principal component analysis (FPCA) is a non-parametric approach developed for regular and dense functional data that flexibly describes temporal trajectories at a potentially lower computational cost. This article presents an empirical simulation study evaluating the behavior of FPCA with sparse and error-prone repeated measures and its robustness under different missing data schemes in comparison with MM. The results show that FPCA is well-suited in the presence of missing at random data caused by dropout, except in scenarios involving most frequent and systematic dropout. Like MM, FPCA fails under missing not at random mechanism. The FPCA was applied to describe the trajectories of four cognitive functions before clinical dementia and contrast them with those of matched controls in a case-control study nested in a population-based aging cohort. The average cognitive declines of future dementia cases showed a sudden divergence from those of their matched controls with a sharp acceleration 5 to 2.5 years prior to diagnosis.</p>\",\"PeriodicalId\":21879,\"journal\":{\"name\":\"Statistics in Medicine\",\"volume\":\" \",\"pages\":\"4899-4912\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics in Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/sim.10214\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/sim.10214","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

由于测量数据稀疏且容易出错、个体内部相关性强、数据缺失以及轨迹形状各异,分析健康研究中的纵向数据具有挑战性。虽然混合效应模型(MM)能有效解决这些难题,但它们仍然是参数模型,可能会产生计算成本。相比之下,函数主成分分析(FPCA)是一种针对规则和密集函数数据开发的非参数方法,能以较低的计算成本灵活描述时间轨迹。本文介绍了一项实证模拟研究,评估了 FPCA 在稀疏且易出错的重复测量中的表现,以及它与 MM 相比在不同缺失数据方案下的鲁棒性。研究结果表明,FPCA 非常适合因遗漏而导致的随机数据缺失,但涉及最频繁和系统性遗漏的情况除外。与 MM 一样,FPCA 在非随机缺失机制下也会失效。在一项嵌套于人口老龄化队列的病例对照研究中,应用 FPCA 描述了临床痴呆前四种认知功能的变化轨迹,并与匹配对照组的认知功能变化轨迹进行了对比。未来痴呆症病例的平均认知功能衰退与匹配对照组的平均认知功能衰退出现了突然的背离,在确诊前 5 到 2.5 年出现了急剧的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Functional Principal Component Analysis as an Alternative to Mixed-Effect Models for Describing Sparse Repeated Measures in Presence of Missing Data.

Analyzing longitudinal data in health studies is challenging due to sparse and error-prone measurements, strong within-individual correlation, missing data and various trajectory shapes. While mixed-effect models (MM) effectively address these challenges, they remain parametric models and may incur computational costs. In contrast, functional principal component analysis (FPCA) is a non-parametric approach developed for regular and dense functional data that flexibly describes temporal trajectories at a potentially lower computational cost. This article presents an empirical simulation study evaluating the behavior of FPCA with sparse and error-prone repeated measures and its robustness under different missing data schemes in comparison with MM. The results show that FPCA is well-suited in the presence of missing at random data caused by dropout, except in scenarios involving most frequent and systematic dropout. Like MM, FPCA fails under missing not at random mechanism. The FPCA was applied to describe the trajectories of four cognitive functions before clinical dementia and contrast them with those of matched controls in a case-control study nested in a population-based aging cohort. The average cognitive declines of future dementia cases showed a sudden divergence from those of their matched controls with a sharp acceleration 5 to 2.5 years prior to diagnosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistics in Medicine
Statistics in Medicine 医学-公共卫生、环境卫生与职业卫生
CiteScore
3.40
自引率
10.00%
发文量
334
审稿时长
2-4 weeks
期刊介绍: The journal aims to influence practice in medicine and its associated sciences through the publication of papers on statistical and other quantitative methods. Papers will explain new methods and demonstrate their application, preferably through a substantive, real, motivating example or a comprehensive evaluation based on an illustrative example. Alternatively, papers will report on case-studies where creative use or technical generalizations of established methodology is directed towards a substantive application. Reviews of, and tutorials on, general topics relevant to the application of statistics to medicine will also be published. The main criteria for publication are appropriateness of the statistical methods to a particular medical problem and clarity of exposition. Papers with primarily mathematical content will be excluded. The journal aims to enhance communication between statisticians, clinicians and medical researchers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信