A. Nathues, M. Hoffmann, R. Sarkar, P. Singh, J. Hernandez, J. H. Pasckert, N. Schmedemann, G. Thangjam, E. Cloutis, K. Mengel, M. Coutelier
{"title":"谷神星上的康苏斯环形山:富含铵的卤水与植硅体交换?","authors":"A. Nathues, M. Hoffmann, R. Sarkar, P. Singh, J. Hernandez, J. H. Pasckert, N. Schmedemann, G. Thangjam, E. Cloutis, K. Mengel, M. Coutelier","doi":"10.1029/2023JE008150","DOIUrl":null,"url":null,"abstract":"<p>Ceres is a partially differentiated dwarf planet located in the main asteroid belt. Consus crater (diameter ∼64 km) is one of the oldest impact features (∼450 Ma) on the Cerean surface that surprisingly still shows a large variety of color lithologies, including exposures of bright material, which are thought to be brine residues. Here, we present new results that help in understanding the structure and composition of the Cerean crust. These results were deduced by using newly processed Dawn Framing Camera (FC) color imagery and FC clear filter images combined with infrared spectral data of Dawn's Visible and Infrared Spectrometer (VIR). Consus exhibits a variety of color lithologies, which we describe in detail. Interestingly, we found three spectrally different types of bright material exposed by a large old crater on Consus' floor. One of these, the yellowish bright material (Nathues et al., 2023, https://www.hou.usra.edu/meetings/lpsc2023/pdf/1073.pdf) and its modification, shows spectral signatures consistent with ammonium-enriched smectites. We hypothesize that the ammonium in these smectites stems from contact with ascending brines, originating from a low-lying former brine ocean that has been enriched in ammonium during the differentiation and freezing process of the Cerean crust. This enrichment is mainly due to ammonium uptake by sheet silicates. If such an ammonium enrichment occurred over long-time scales on a global scale, this process may explain the vast presence of ammonium on the Cerean surface. Therefore, an outer solar system origin of Ceres is possibly not needed to explain the global presence of ammonium.</p>","PeriodicalId":16101,"journal":{"name":"Journal of Geophysical Research: Planets","volume":"129 9","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023JE008150","citationCount":"0","resultStr":"{\"title\":\"Consus Crater on Ceres: Ammonium-Enriched Brines in Exchange With Phyllosilicates?\",\"authors\":\"A. Nathues, M. Hoffmann, R. Sarkar, P. Singh, J. Hernandez, J. H. Pasckert, N. Schmedemann, G. Thangjam, E. Cloutis, K. Mengel, M. Coutelier\",\"doi\":\"10.1029/2023JE008150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Ceres is a partially differentiated dwarf planet located in the main asteroid belt. Consus crater (diameter ∼64 km) is one of the oldest impact features (∼450 Ma) on the Cerean surface that surprisingly still shows a large variety of color lithologies, including exposures of bright material, which are thought to be brine residues. Here, we present new results that help in understanding the structure and composition of the Cerean crust. These results were deduced by using newly processed Dawn Framing Camera (FC) color imagery and FC clear filter images combined with infrared spectral data of Dawn's Visible and Infrared Spectrometer (VIR). Consus exhibits a variety of color lithologies, which we describe in detail. Interestingly, we found three spectrally different types of bright material exposed by a large old crater on Consus' floor. One of these, the yellowish bright material (Nathues et al., 2023, https://www.hou.usra.edu/meetings/lpsc2023/pdf/1073.pdf) and its modification, shows spectral signatures consistent with ammonium-enriched smectites. We hypothesize that the ammonium in these smectites stems from contact with ascending brines, originating from a low-lying former brine ocean that has been enriched in ammonium during the differentiation and freezing process of the Cerean crust. This enrichment is mainly due to ammonium uptake by sheet silicates. If such an ammonium enrichment occurred over long-time scales on a global scale, this process may explain the vast presence of ammonium on the Cerean surface. Therefore, an outer solar system origin of Ceres is possibly not needed to explain the global presence of ammonium.</p>\",\"PeriodicalId\":16101,\"journal\":{\"name\":\"Journal of Geophysical Research: Planets\",\"volume\":\"129 9\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023JE008150\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Planets\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2023JE008150\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Planets","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023JE008150","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Consus Crater on Ceres: Ammonium-Enriched Brines in Exchange With Phyllosilicates?
Ceres is a partially differentiated dwarf planet located in the main asteroid belt. Consus crater (diameter ∼64 km) is one of the oldest impact features (∼450 Ma) on the Cerean surface that surprisingly still shows a large variety of color lithologies, including exposures of bright material, which are thought to be brine residues. Here, we present new results that help in understanding the structure and composition of the Cerean crust. These results were deduced by using newly processed Dawn Framing Camera (FC) color imagery and FC clear filter images combined with infrared spectral data of Dawn's Visible and Infrared Spectrometer (VIR). Consus exhibits a variety of color lithologies, which we describe in detail. Interestingly, we found three spectrally different types of bright material exposed by a large old crater on Consus' floor. One of these, the yellowish bright material (Nathues et al., 2023, https://www.hou.usra.edu/meetings/lpsc2023/pdf/1073.pdf) and its modification, shows spectral signatures consistent with ammonium-enriched smectites. We hypothesize that the ammonium in these smectites stems from contact with ascending brines, originating from a low-lying former brine ocean that has been enriched in ammonium during the differentiation and freezing process of the Cerean crust. This enrichment is mainly due to ammonium uptake by sheet silicates. If such an ammonium enrichment occurred over long-time scales on a global scale, this process may explain the vast presence of ammonium on the Cerean surface. Therefore, an outer solar system origin of Ceres is possibly not needed to explain the global presence of ammonium.
期刊介绍:
The Journal of Geophysical Research Planets is dedicated to the publication of new and original research in the broad field of planetary science. Manuscripts concerning planetary geology, geophysics, geochemistry, atmospheres, and dynamics are appropriate for the journal when they increase knowledge about the processes that affect Solar System objects. Manuscripts concerning other planetary systems, exoplanets or Earth are welcome when presented in a comparative planetology perspective. Studies in the field of astrobiology will be considered when they have immediate consequences for the interpretation of planetary data. JGR: Planets does not publish manuscripts that deal with future missions and instrumentation, nor those that are primarily of an engineering interest. Instrument, calibration or data processing papers may be appropriate for the journal, but only when accompanied by scientific analysis and interpretation that increases understanding of the studied object. A manuscript that describes a new method or technique would be acceptable for JGR: Planets if it contained new and relevant scientific results obtained using the method. Review articles are generally not appropriate for JGR: Planets, but they may be considered if they form an integral part of a special issue.