{"title":"小行星热演化与碎裂和重新组装成引力聚合体的确定性模型","authors":"J. Ren, M. A. Hesse, N. Dygert, M. P. Lucas","doi":"10.1029/2023JE007898","DOIUrl":null,"url":null,"abstract":"<p>We present a model for the thermal evolution of asteroids that experience catastrophic fragmentation and reassembly into a gravitational aggregate. The three stage model comprises the initial radiogenic heating, fragmentation and cooling, and reassembly into a porous gravitational aggregate. The heat loss during catastrophic fragmentation is largely determined by the production of small particles that equilibrate thermally with ambient space. To determine this heat loss we combine a power-law for the cumulative fragment mass distribution with analytic solutions for conductive cooling. To keep the model deterministic we fragment the parent body and reassemble the gravitational aggregate in shells ordered in decreasing volume. We use the resulting model to show that catastrophic fragmentation can lead to significant heat loss despite the short reassembly times (e.g., <span></span><math>\n <semantics>\n <mrow>\n <mo>≤</mo>\n </mrow>\n <annotation> ${\\le} $</annotation>\n </semantics></math>1 year), due to the production of many small fragments. Despite the heat loss during fragmentation, the reassembled gravitational aggregate will retain more heat than the undisturbed parent body in the long term, due to the formation of an insulating megaregolith. Applied to the H-chondrite parent body, our model can reproduce both the fast cooling rates at high temperatures and slow cooling rates at low temperature.</p>","PeriodicalId":16101,"journal":{"name":"Journal of Geophysical Research: Planets","volume":"129 9","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deterministic Model for Asteroid Thermal Evolution With Fragmentation and Reassembly Into a Gravitational Aggregate\",\"authors\":\"J. Ren, M. A. Hesse, N. Dygert, M. P. Lucas\",\"doi\":\"10.1029/2023JE007898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We present a model for the thermal evolution of asteroids that experience catastrophic fragmentation and reassembly into a gravitational aggregate. The three stage model comprises the initial radiogenic heating, fragmentation and cooling, and reassembly into a porous gravitational aggregate. The heat loss during catastrophic fragmentation is largely determined by the production of small particles that equilibrate thermally with ambient space. To determine this heat loss we combine a power-law for the cumulative fragment mass distribution with analytic solutions for conductive cooling. To keep the model deterministic we fragment the parent body and reassemble the gravitational aggregate in shells ordered in decreasing volume. We use the resulting model to show that catastrophic fragmentation can lead to significant heat loss despite the short reassembly times (e.g., <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>≤</mo>\\n </mrow>\\n <annotation> ${\\\\le} $</annotation>\\n </semantics></math>1 year), due to the production of many small fragments. Despite the heat loss during fragmentation, the reassembled gravitational aggregate will retain more heat than the undisturbed parent body in the long term, due to the formation of an insulating megaregolith. Applied to the H-chondrite parent body, our model can reproduce both the fast cooling rates at high temperatures and slow cooling rates at low temperature.</p>\",\"PeriodicalId\":16101,\"journal\":{\"name\":\"Journal of Geophysical Research: Planets\",\"volume\":\"129 9\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Planets\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2023JE007898\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Planets","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023JE007898","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Deterministic Model for Asteroid Thermal Evolution With Fragmentation and Reassembly Into a Gravitational Aggregate
We present a model for the thermal evolution of asteroids that experience catastrophic fragmentation and reassembly into a gravitational aggregate. The three stage model comprises the initial radiogenic heating, fragmentation and cooling, and reassembly into a porous gravitational aggregate. The heat loss during catastrophic fragmentation is largely determined by the production of small particles that equilibrate thermally with ambient space. To determine this heat loss we combine a power-law for the cumulative fragment mass distribution with analytic solutions for conductive cooling. To keep the model deterministic we fragment the parent body and reassemble the gravitational aggregate in shells ordered in decreasing volume. We use the resulting model to show that catastrophic fragmentation can lead to significant heat loss despite the short reassembly times (e.g., 1 year), due to the production of many small fragments. Despite the heat loss during fragmentation, the reassembled gravitational aggregate will retain more heat than the undisturbed parent body in the long term, due to the formation of an insulating megaregolith. Applied to the H-chondrite parent body, our model can reproduce both the fast cooling rates at high temperatures and slow cooling rates at low temperature.
期刊介绍:
The Journal of Geophysical Research Planets is dedicated to the publication of new and original research in the broad field of planetary science. Manuscripts concerning planetary geology, geophysics, geochemistry, atmospheres, and dynamics are appropriate for the journal when they increase knowledge about the processes that affect Solar System objects. Manuscripts concerning other planetary systems, exoplanets or Earth are welcome when presented in a comparative planetology perspective. Studies in the field of astrobiology will be considered when they have immediate consequences for the interpretation of planetary data. JGR: Planets does not publish manuscripts that deal with future missions and instrumentation, nor those that are primarily of an engineering interest. Instrument, calibration or data processing papers may be appropriate for the journal, but only when accompanied by scientific analysis and interpretation that increases understanding of the studied object. A manuscript that describes a new method or technique would be acceptable for JGR: Planets if it contained new and relevant scientific results obtained using the method. Review articles are generally not appropriate for JGR: Planets, but they may be considered if they form an integral part of a special issue.