{"title":"依赖水平的准出生-死亡过程中极值和相关命中概率的计算方法","authors":"A. Di Crescenzo , A. Gómez-Corral , D. Taipe","doi":"10.1016/j.matcom.2024.08.019","DOIUrl":null,"url":null,"abstract":"<div><p>This paper analyzes the dynamics of a level-dependent quasi-birth–death process <span><math><mrow><mi>X</mi><mo>=</mo><mrow><mo>{</mo><mrow><mo>(</mo><mi>I</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>,</mo><mi>J</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>:</mo><mi>t</mi><mo>≥</mo><mn>0</mn><mo>}</mo></mrow></mrow></math></span>, i.e., a bi-variate Markov chain defined on the countable state space <span><math><mrow><msubsup><mrow><mo>∪</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>∞</mi></mrow></msubsup><mi>l</mi><mrow><mo>(</mo><mi>i</mi><mo>)</mo></mrow></mrow></math></span> with <span><math><mrow><mi>l</mi><mrow><mo>(</mo><mi>i</mi><mo>)</mo></mrow><mo>=</mo><mrow><mo>{</mo><mrow><mo>(</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo>)</mo></mrow><mo>:</mo><mi>j</mi><mo>∈</mo><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>}</mo></mrow><mo>}</mo></mrow></mrow></math></span>, for integers <span><math><mrow><msub><mrow><mi>M</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><msub><mrow><mi>N</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></math></span> and <span><math><mrow><mi>i</mi><mo>∈</mo><msub><mrow><mi>N</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></math></span>, which has the special property that its <span><math><mi>q</mi></math></span>-matrix has a block-tridiagonal form. Under the assumption that the first passage to the subset <span><math><mrow><mi>l</mi><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></mrow></math></span> occurs in a finite time with certainty, we characterize the probability law of <span><math><mrow><mo>(</mo><msub><mrow><mi>τ</mi></mrow><mrow><mo>max</mo></mrow></msub><mo>,</mo><msub><mrow><mi>I</mi></mrow><mrow><mo>max</mo></mrow></msub><mo>,</mo><mi>J</mi><mrow><mo>(</mo><msub><mrow><mi>τ</mi></mrow><mrow><mo>max</mo></mrow></msub><mo>)</mo></mrow><mo>)</mo></mrow></math></span>, where <span><math><msub><mrow><mi>I</mi></mrow><mrow><mo>max</mo></mrow></msub></math></span> is the running maximum level attained by process <span><math><mi>X</mi></math></span> before its first visit to states in <span><math><mrow><mi>l</mi><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></mrow></math></span>, <span><math><msub><mrow><mi>τ</mi></mrow><mrow><mo>max</mo></mrow></msub></math></span> is the first time that the level process <span><math><mrow><mo>{</mo><mi>I</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>:</mo><mi>t</mi><mo>≥</mo><mn>0</mn><mo>}</mo></mrow></math></span> reaches the running maximum <span><math><msub><mrow><mi>I</mi></mrow><mrow><mo>max</mo></mrow></msub></math></span>, and <span><math><mrow><mi>J</mi><mrow><mo>(</mo><msub><mrow><mi>τ</mi></mrow><mrow><mo>max</mo></mrow></msub><mo>)</mo></mrow></mrow></math></span> is the phase at time <span><math><msub><mrow><mi>τ</mi></mrow><mrow><mo>max</mo></mrow></msub></math></span>. Our methods rely on the use of restricted Laplace–Stieltjes transforms of <span><math><msub><mrow><mi>τ</mi></mrow><mrow><mo>max</mo></mrow></msub></math></span> on the set of sample paths <span><math><mrow><mo>{</mo><msub><mrow><mi>I</mi></mrow><mrow><mo>max</mo></mrow></msub><mo>=</mo><mi>i</mi><mo>,</mo><mi>J</mi><mrow><mo>(</mo><msub><mrow><mi>τ</mi></mrow><mrow><mo>max</mo></mrow></msub><mo>)</mo></mrow><mo>=</mo><mi>j</mi><mo>}</mo></mrow></math></span>, and related processes under taboo of certain subsets of states. The utility of the resulting computational algorithms is demonstrated in two epidemic models: the SIS model for horizontally and vertically transmitted diseases; and the SIR model with constant population size.</p></div>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0378475424003215/pdfft?md5=ec529de84353f32482eeacc5cffbcd11&pid=1-s2.0-S0378475424003215-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A computational approach to extreme values and related hitting probabilities in level-dependent quasi-birth–death processes\",\"authors\":\"A. Di Crescenzo , A. Gómez-Corral , D. Taipe\",\"doi\":\"10.1016/j.matcom.2024.08.019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper analyzes the dynamics of a level-dependent quasi-birth–death process <span><math><mrow><mi>X</mi><mo>=</mo><mrow><mo>{</mo><mrow><mo>(</mo><mi>I</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>,</mo><mi>J</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>:</mo><mi>t</mi><mo>≥</mo><mn>0</mn><mo>}</mo></mrow></mrow></math></span>, i.e., a bi-variate Markov chain defined on the countable state space <span><math><mrow><msubsup><mrow><mo>∪</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>∞</mi></mrow></msubsup><mi>l</mi><mrow><mo>(</mo><mi>i</mi><mo>)</mo></mrow></mrow></math></span> with <span><math><mrow><mi>l</mi><mrow><mo>(</mo><mi>i</mi><mo>)</mo></mrow><mo>=</mo><mrow><mo>{</mo><mrow><mo>(</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo>)</mo></mrow><mo>:</mo><mi>j</mi><mo>∈</mo><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>}</mo></mrow><mo>}</mo></mrow></mrow></math></span>, for integers <span><math><mrow><msub><mrow><mi>M</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><msub><mrow><mi>N</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></math></span> and <span><math><mrow><mi>i</mi><mo>∈</mo><msub><mrow><mi>N</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></math></span>, which has the special property that its <span><math><mi>q</mi></math></span>-matrix has a block-tridiagonal form. Under the assumption that the first passage to the subset <span><math><mrow><mi>l</mi><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></mrow></math></span> occurs in a finite time with certainty, we characterize the probability law of <span><math><mrow><mo>(</mo><msub><mrow><mi>τ</mi></mrow><mrow><mo>max</mo></mrow></msub><mo>,</mo><msub><mrow><mi>I</mi></mrow><mrow><mo>max</mo></mrow></msub><mo>,</mo><mi>J</mi><mrow><mo>(</mo><msub><mrow><mi>τ</mi></mrow><mrow><mo>max</mo></mrow></msub><mo>)</mo></mrow><mo>)</mo></mrow></math></span>, where <span><math><msub><mrow><mi>I</mi></mrow><mrow><mo>max</mo></mrow></msub></math></span> is the running maximum level attained by process <span><math><mi>X</mi></math></span> before its first visit to states in <span><math><mrow><mi>l</mi><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></mrow></math></span>, <span><math><msub><mrow><mi>τ</mi></mrow><mrow><mo>max</mo></mrow></msub></math></span> is the first time that the level process <span><math><mrow><mo>{</mo><mi>I</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>:</mo><mi>t</mi><mo>≥</mo><mn>0</mn><mo>}</mo></mrow></math></span> reaches the running maximum <span><math><msub><mrow><mi>I</mi></mrow><mrow><mo>max</mo></mrow></msub></math></span>, and <span><math><mrow><mi>J</mi><mrow><mo>(</mo><msub><mrow><mi>τ</mi></mrow><mrow><mo>max</mo></mrow></msub><mo>)</mo></mrow></mrow></math></span> is the phase at time <span><math><msub><mrow><mi>τ</mi></mrow><mrow><mo>max</mo></mrow></msub></math></span>. Our methods rely on the use of restricted Laplace–Stieltjes transforms of <span><math><msub><mrow><mi>τ</mi></mrow><mrow><mo>max</mo></mrow></msub></math></span> on the set of sample paths <span><math><mrow><mo>{</mo><msub><mrow><mi>I</mi></mrow><mrow><mo>max</mo></mrow></msub><mo>=</mo><mi>i</mi><mo>,</mo><mi>J</mi><mrow><mo>(</mo><msub><mrow><mi>τ</mi></mrow><mrow><mo>max</mo></mrow></msub><mo>)</mo></mrow><mo>=</mo><mi>j</mi><mo>}</mo></mrow></math></span>, and related processes under taboo of certain subsets of states. The utility of the resulting computational algorithms is demonstrated in two epidemic models: the SIS model for horizontally and vertically transmitted diseases; and the SIR model with constant population size.</p></div>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0378475424003215/pdfft?md5=ec529de84353f32482eeacc5cffbcd11&pid=1-s2.0-S0378475424003215-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378475424003215\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378475424003215","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
A computational approach to extreme values and related hitting probabilities in level-dependent quasi-birth–death processes
This paper analyzes the dynamics of a level-dependent quasi-birth–death process , i.e., a bi-variate Markov chain defined on the countable state space with , for integers and , which has the special property that its -matrix has a block-tridiagonal form. Under the assumption that the first passage to the subset occurs in a finite time with certainty, we characterize the probability law of , where is the running maximum level attained by process before its first visit to states in , is the first time that the level process reaches the running maximum , and is the phase at time . Our methods rely on the use of restricted Laplace–Stieltjes transforms of on the set of sample paths , and related processes under taboo of certain subsets of states. The utility of the resulting computational algorithms is demonstrated in two epidemic models: the SIS model for horizontally and vertically transmitted diseases; and the SIR model with constant population size.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.