高性能碱金属离子电池阳极:通过第一原理研究类石墨烯 ZnO/Ti2CS2 异质结构

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
{"title":"高性能碱金属离子电池阳极:通过第一原理研究类石墨烯 ZnO/Ti2CS2 异质结构","authors":"","doi":"10.1016/j.commatsci.2024.113289","DOIUrl":null,"url":null,"abstract":"<div><p>Two-dimensional transition metal oxides and MXenes stand out as potential anode materials for alkali metal ion batteries, yet their performance is hindered by semiconductor conductivity and layer re-stacking issues. To circumvent these limitations, we explored the use of van der Waals heterostructures, specifically assembling a graphene-like ZnO/Ti<sub>2</sub>CS<sub>2</sub> heterostructure (g-ZnO/Ti<sub>2</sub>CS<sub>2</sub>), and evaluated its efficacy as an anode material for Li/Na/K ion batteries (LIBs/NIBs/KIBs) through first-principles calculations. Our findings reveal that g-ZnO/Ti<sub>2</sub>CS<sub>2</sub> maintains thermal stability at room temperature and demonstrates metallic conductivity. It also supports stable adsorption of single Li/Na/K atoms and facilitates their diffusion with a barrier under 0.5 eV, indicating superior rate performance. Furthermore, g-ZnO/Ti<sub>2</sub>CS<sub>2</sub> exhibits an average open circuit voltage (OCV) between 0–1 V and delivers specific capacities of 529/317/317 mAh/g for LIBs/NIBs/KIBs, surpassing traditional graphite anodes. These characteristics indicate that g-ZnO/Ti<sub>2</sub>CS<sub>2</sub> is a promising anode material, particularly for LIBs, offering a theoretical foundation for future anode material research for alkali metal ion batteries.</p></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-performance alkali metal ion battery anodes: A graphene-like ZnO/Ti2CS2 heterostructure study via first-principles\",\"authors\":\"\",\"doi\":\"10.1016/j.commatsci.2024.113289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Two-dimensional transition metal oxides and MXenes stand out as potential anode materials for alkali metal ion batteries, yet their performance is hindered by semiconductor conductivity and layer re-stacking issues. To circumvent these limitations, we explored the use of van der Waals heterostructures, specifically assembling a graphene-like ZnO/Ti<sub>2</sub>CS<sub>2</sub> heterostructure (g-ZnO/Ti<sub>2</sub>CS<sub>2</sub>), and evaluated its efficacy as an anode material for Li/Na/K ion batteries (LIBs/NIBs/KIBs) through first-principles calculations. Our findings reveal that g-ZnO/Ti<sub>2</sub>CS<sub>2</sub> maintains thermal stability at room temperature and demonstrates metallic conductivity. It also supports stable adsorption of single Li/Na/K atoms and facilitates their diffusion with a barrier under 0.5 eV, indicating superior rate performance. Furthermore, g-ZnO/Ti<sub>2</sub>CS<sub>2</sub> exhibits an average open circuit voltage (OCV) between 0–1 V and delivers specific capacities of 529/317/317 mAh/g for LIBs/NIBs/KIBs, surpassing traditional graphite anodes. These characteristics indicate that g-ZnO/Ti<sub>2</sub>CS<sub>2</sub> is a promising anode material, particularly for LIBs, offering a theoretical foundation for future anode material research for alkali metal ion batteries.</p></div>\",\"PeriodicalId\":10650,\"journal\":{\"name\":\"Computational Materials Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S092702562400510X\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092702562400510X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

二维过渡金属氧化物和二氧化二烯类是碱金属离子电池的潜在阳极材料,但它们的性能受到半导体导电性和层再堆叠问题的阻碍。为了规避这些限制,我们探索了范德华异质结构的使用,特别是组装了一种类似石墨烯的氧化锌/Ti2CS2 异质结构(g-ZnO/Ti2CS2),并通过第一原理计算评估了其作为锂/纳/钾离子电池(LIBs/NIBs/KIBs)阳极材料的功效。我们的研究结果表明,g-ZnO/Ti2CS2 在室温下保持热稳定性,并具有金属导电性。它还支持单个 Li/Na/K 原子的稳定吸附,并促进它们的扩散,其势垒低于 0.5 eV,这表明它具有卓越的速率性能。此外,g-ZnO/Ti2CS2 的平均开路电压(OCV)在 0-1 V 之间,为 LIBs/NIBs/KIBs 提供的比容量为 529/317/317 mAh/g,超过了传统的石墨阳极。这些特性表明 g-ZnO/Ti2CS2 是一种前景广阔的阳极材料,尤其适用于 LIB,为碱金属离子电池阳极材料的未来研究提供了理论基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

High-performance alkali metal ion battery anodes: A graphene-like ZnO/Ti2CS2 heterostructure study via first-principles

High-performance alkali metal ion battery anodes: A graphene-like ZnO/Ti2CS2 heterostructure study via first-principles

Two-dimensional transition metal oxides and MXenes stand out as potential anode materials for alkali metal ion batteries, yet their performance is hindered by semiconductor conductivity and layer re-stacking issues. To circumvent these limitations, we explored the use of van der Waals heterostructures, specifically assembling a graphene-like ZnO/Ti2CS2 heterostructure (g-ZnO/Ti2CS2), and evaluated its efficacy as an anode material for Li/Na/K ion batteries (LIBs/NIBs/KIBs) through first-principles calculations. Our findings reveal that g-ZnO/Ti2CS2 maintains thermal stability at room temperature and demonstrates metallic conductivity. It also supports stable adsorption of single Li/Na/K atoms and facilitates their diffusion with a barrier under 0.5 eV, indicating superior rate performance. Furthermore, g-ZnO/Ti2CS2 exhibits an average open circuit voltage (OCV) between 0–1 V and delivers specific capacities of 529/317/317 mAh/g for LIBs/NIBs/KIBs, surpassing traditional graphite anodes. These characteristics indicate that g-ZnO/Ti2CS2 is a promising anode material, particularly for LIBs, offering a theoretical foundation for future anode material research for alkali metal ion batteries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Materials Science
Computational Materials Science 工程技术-材料科学:综合
CiteScore
6.50
自引率
6.10%
发文量
665
审稿时长
26 days
期刊介绍: The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信