信息质量越高越好:为多模态实体和关系提取分层生成多证据对齐和融合模型

IF 7.4 1区 管理学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
{"title":"信息质量越高越好:为多模态实体和关系提取分层生成多证据对齐和融合模型","authors":"","doi":"10.1016/j.ipm.2024.103875","DOIUrl":null,"url":null,"abstract":"<div><p>Multimodal Entity and Relation Extraction (MERE) encompasses tasks, including Multimodal Named Entity Recognition (MNER) and Multimodal Relation Extraction (MRE), aiming to extract valuable information from environments rich in multimodal data. Currently, many research endeavors face various challenges, including the insufficient utilization of emotional information in multimodal data, mismatches between textual and visual content, ambiguous meanings, and difficulties achieving precise alignment across different semantic levels. To address these issues, we propose the <strong>H</strong>ierarchical <strong>G</strong>eneration of <strong>M</strong>ulti Evidence <strong>A</strong>lignment <strong>F</strong>usion Model for Multimodal Entity and Relation Extraction (HGMAF). This model comprises a hierarchical diffusion semantic generation stage and a multi-evidence alignment fusion module. Initially, we designed different prompt templates for the original text, using the Large Language Model (LLM) to generate corresponding hierarchical textual content. Subsequently, the generated hierarchical content is diffused to obtain images with rich hierarchical semantic information. This stage contributes to enhancing the model's understanding of hierarchical information in the original content. Following this, we design the multi-evidence alignment fusion module, which combines the generated textual and image evidence, fully leveraging information from different sources to improve extraction accuracy. Experimental results demonstrate that our model achieves F1 scores of 76.29 %, 87.66 %, and 87.34 % on the Twitter2015, Twitter2017, and MNRE datasets, respectively. These results surpass the previous state-of-the-art models by 0.29 %, 0.1 %, and 2.77 %. Furthermore, our model demonstrates superior performance in low-resource scenarios, confirming its effectiveness. The related code can be found at <span><span>https://github.com/lsx314/HGMAF</span><svg><path></path></svg></span>.</p></div>","PeriodicalId":50365,"journal":{"name":"Information Processing & Management","volume":null,"pages":null},"PeriodicalIF":7.4000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0306457324002346/pdfft?md5=e619cd49017958045ad28bee7549ebe9&pid=1-s2.0-S0306457324002346-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The more quality information the better: Hierarchical generation of multi-evidence alignment and fusion model for multimodal entity and relation extraction\",\"authors\":\"\",\"doi\":\"10.1016/j.ipm.2024.103875\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Multimodal Entity and Relation Extraction (MERE) encompasses tasks, including Multimodal Named Entity Recognition (MNER) and Multimodal Relation Extraction (MRE), aiming to extract valuable information from environments rich in multimodal data. Currently, many research endeavors face various challenges, including the insufficient utilization of emotional information in multimodal data, mismatches between textual and visual content, ambiguous meanings, and difficulties achieving precise alignment across different semantic levels. To address these issues, we propose the <strong>H</strong>ierarchical <strong>G</strong>eneration of <strong>M</strong>ulti Evidence <strong>A</strong>lignment <strong>F</strong>usion Model for Multimodal Entity and Relation Extraction (HGMAF). This model comprises a hierarchical diffusion semantic generation stage and a multi-evidence alignment fusion module. Initially, we designed different prompt templates for the original text, using the Large Language Model (LLM) to generate corresponding hierarchical textual content. Subsequently, the generated hierarchical content is diffused to obtain images with rich hierarchical semantic information. This stage contributes to enhancing the model's understanding of hierarchical information in the original content. Following this, we design the multi-evidence alignment fusion module, which combines the generated textual and image evidence, fully leveraging information from different sources to improve extraction accuracy. Experimental results demonstrate that our model achieves F1 scores of 76.29 %, 87.66 %, and 87.34 % on the Twitter2015, Twitter2017, and MNRE datasets, respectively. These results surpass the previous state-of-the-art models by 0.29 %, 0.1 %, and 2.77 %. Furthermore, our model demonstrates superior performance in low-resource scenarios, confirming its effectiveness. The related code can be found at <span><span>https://github.com/lsx314/HGMAF</span><svg><path></path></svg></span>.</p></div>\",\"PeriodicalId\":50365,\"journal\":{\"name\":\"Information Processing & Management\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0306457324002346/pdfft?md5=e619cd49017958045ad28bee7549ebe9&pid=1-s2.0-S0306457324002346-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Processing & Management\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306457324002346\",\"RegionNum\":1,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing & Management","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306457324002346","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

多模态实体和关系提取(MERE)包括多模态命名实体识别(MNER)和多模态关系提取(MRE)等任务,旨在从多模态数据丰富的环境中提取有价值的信息。目前,许多研究工作都面临着各种挑战,包括对多模态数据中情感信息的利用不足、文本与视觉内容不匹配、含义模糊以及难以实现不同语义层次的精确对齐等。为了解决这些问题,我们提出了用于多模态实体和关系提取的分层生成多证据对齐融合模型(HGMAF)。该模型由分层扩散语义生成阶段和多证据对齐融合模块组成。首先,我们为原始文本设计了不同的提示模板,利用大语言模型(LLM)生成相应的分层文本内容。随后,对生成的分层内容进行扩散,以获得具有丰富分层语义信息的图像。这一阶段有助于增强模型对原始内容中层次信息的理解。随后,我们设计了多证据对齐融合模块,将生成的文本证据和图像证据结合起来,充分利用不同来源的信息来提高提取的准确性。实验结果表明,我们的模型在 Twitter2015、Twitter2017 和 MNRE 数据集上的 F1 分数分别达到了 76.29%、87.66% 和 87.34%。这些结果分别比之前最先进的模型高出 0.29 %、0.1 % 和 2.77 %。此外,我们的模型在资源匮乏的情况下也表现出了卓越的性能,证明了它的有效性。相关代码见 https://github.com/lsx314/HGMAF。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The more quality information the better: Hierarchical generation of multi-evidence alignment and fusion model for multimodal entity and relation extraction

Multimodal Entity and Relation Extraction (MERE) encompasses tasks, including Multimodal Named Entity Recognition (MNER) and Multimodal Relation Extraction (MRE), aiming to extract valuable information from environments rich in multimodal data. Currently, many research endeavors face various challenges, including the insufficient utilization of emotional information in multimodal data, mismatches between textual and visual content, ambiguous meanings, and difficulties achieving precise alignment across different semantic levels. To address these issues, we propose the Hierarchical Generation of Multi Evidence Alignment Fusion Model for Multimodal Entity and Relation Extraction (HGMAF). This model comprises a hierarchical diffusion semantic generation stage and a multi-evidence alignment fusion module. Initially, we designed different prompt templates for the original text, using the Large Language Model (LLM) to generate corresponding hierarchical textual content. Subsequently, the generated hierarchical content is diffused to obtain images with rich hierarchical semantic information. This stage contributes to enhancing the model's understanding of hierarchical information in the original content. Following this, we design the multi-evidence alignment fusion module, which combines the generated textual and image evidence, fully leveraging information from different sources to improve extraction accuracy. Experimental results demonstrate that our model achieves F1 scores of 76.29 %, 87.66 %, and 87.34 % on the Twitter2015, Twitter2017, and MNRE datasets, respectively. These results surpass the previous state-of-the-art models by 0.29 %, 0.1 %, and 2.77 %. Furthermore, our model demonstrates superior performance in low-resource scenarios, confirming its effectiveness. The related code can be found at https://github.com/lsx314/HGMAF.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information Processing & Management
Information Processing & Management 工程技术-计算机:信息系统
CiteScore
17.00
自引率
11.60%
发文量
276
审稿时长
39 days
期刊介绍: Information Processing and Management is dedicated to publishing cutting-edge original research at the convergence of computing and information science. Our scope encompasses theory, methods, and applications across various domains, including advertising, business, health, information science, information technology marketing, and social computing. We aim to cater to the interests of both primary researchers and practitioners by offering an effective platform for the timely dissemination of advanced and topical issues in this interdisciplinary field. The journal places particular emphasis on original research articles, research survey articles, research method articles, and articles addressing critical applications of research. Join us in advancing knowledge and innovation at the intersection of computing and information science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信