{"title":"用于离心泵的模块化软传感器","authors":"Sebastian Leonow, Qi Zhang, Martin Mönnigmann","doi":"10.1016/j.ifacol.2024.08.319","DOIUrl":null,"url":null,"abstract":"<div><p>Soft sensors experience an increasing interest in recent years, as they can replace expensive hardware meters and the required embedded computing hardware has become cheap and powerful. We report results for the implementation of a soft sensor for the flow rate estimation in centrifugal pumps that achieves root mean square errors of about 5%. The proposed soft sensor is based on generic models for the drive and hydraulic part of the pump to ensure widespread applicability. We show the soft sensor and the models it is based on can be parametrized with simple measurements. All theoretical considerations are corroborated with measurements on a real industrial pump in a laboratory setup. The results show that the proposed soft sensor is capable of providing reliable flow rate estimates in spite of plant model mismatch and uncertain hardware components.</p></div>","PeriodicalId":37894,"journal":{"name":"IFAC-PapersOnLine","volume":"58 14","pages":"Pages 91-96"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405896324010620/pdf?md5=bfa9d3fdc97af3048f1aebbe0f22e76a&pid=1-s2.0-S2405896324010620-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A Modular Soft Sensor for Centrifugal Pumps\",\"authors\":\"Sebastian Leonow, Qi Zhang, Martin Mönnigmann\",\"doi\":\"10.1016/j.ifacol.2024.08.319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Soft sensors experience an increasing interest in recent years, as they can replace expensive hardware meters and the required embedded computing hardware has become cheap and powerful. We report results for the implementation of a soft sensor for the flow rate estimation in centrifugal pumps that achieves root mean square errors of about 5%. The proposed soft sensor is based on generic models for the drive and hydraulic part of the pump to ensure widespread applicability. We show the soft sensor and the models it is based on can be parametrized with simple measurements. All theoretical considerations are corroborated with measurements on a real industrial pump in a laboratory setup. The results show that the proposed soft sensor is capable of providing reliable flow rate estimates in spite of plant model mismatch and uncertain hardware components.</p></div>\",\"PeriodicalId\":37894,\"journal\":{\"name\":\"IFAC-PapersOnLine\",\"volume\":\"58 14\",\"pages\":\"Pages 91-96\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2405896324010620/pdf?md5=bfa9d3fdc97af3048f1aebbe0f22e76a&pid=1-s2.0-S2405896324010620-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IFAC-PapersOnLine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405896324010620\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IFAC-PapersOnLine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405896324010620","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Soft sensors experience an increasing interest in recent years, as they can replace expensive hardware meters and the required embedded computing hardware has become cheap and powerful. We report results for the implementation of a soft sensor for the flow rate estimation in centrifugal pumps that achieves root mean square errors of about 5%. The proposed soft sensor is based on generic models for the drive and hydraulic part of the pump to ensure widespread applicability. We show the soft sensor and the models it is based on can be parametrized with simple measurements. All theoretical considerations are corroborated with measurements on a real industrial pump in a laboratory setup. The results show that the proposed soft sensor is capable of providing reliable flow rate estimates in spite of plant model mismatch and uncertain hardware components.
期刊介绍:
All papers from IFAC meetings are published, in partnership with Elsevier, the IFAC Publisher, in theIFAC-PapersOnLine proceedings series hosted at the ScienceDirect web service. This series includes papers previously published in the IFAC website.The main features of the IFAC-PapersOnLine series are: -Online archive including papers from IFAC Symposia, Congresses, Conferences, and most Workshops. -All papers accepted at the meeting are published in PDF format - searchable and citable. -All papers published on the web site can be cited using the IFAC PapersOnLine ISSN and the individual paper DOI (Digital Object Identifier). The site is Open Access in nature - no charge is made to individuals for reading or downloading. Copyright of all papers belongs to IFAC and must be referenced if derivative journal papers are produced from the conference papers. All papers published in IFAC-PapersOnLine have undergone a peer review selection process according to the IFAC rules.