{"title":"利用压缩与因果关系之间的权衡发现潜在因果变量♦","authors":"Xinrui Gao , Yiman Huang , Yuri A.W. Shardt","doi":"10.1016/j.ifacol.2024.08.304","DOIUrl":null,"url":null,"abstract":"<div><p>Causality is a fundamental relationship in the physical world, around which almost all activities of human life revolve. Causal inference refers to the process of determining whether an event or action caused a specific outcome, which involves the evaluation of cause-and-effect relationships in data. This paper presents a new approach to discover latent causal representations of crucial variables in easy-to-obtain data. The proposed method takes a form of trade-off between compression of input data and the causality between the learnt latent variables and critical variables, thereby removing the irrelevant information contained in input data and obtaining the decoupled, strongest causal factors. By introducing variational bounds and specific configurations, the optimisation objective is relaxed to a tractable problem. The approach compacts causal discovery and inference into one model, which is flexible to downstream tasks and parsimonious in the parameters. A case study on an exhaust-emission dataset shows that the proposed method improves the predictive performance over the baseline model, which is a variational information bottleneck model with the same hyperparameters.</p></div>","PeriodicalId":37894,"journal":{"name":"IFAC-PapersOnLine","volume":"58 14","pages":"Pages 1-6"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405896324010462/pdf?md5=016627c030467dc8d74667395283c4b2&pid=1-s2.0-S2405896324010462-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Discovering Latent Causal Variables Using a Trade-Off Between Compression and Causality♦\",\"authors\":\"Xinrui Gao , Yiman Huang , Yuri A.W. Shardt\",\"doi\":\"10.1016/j.ifacol.2024.08.304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Causality is a fundamental relationship in the physical world, around which almost all activities of human life revolve. Causal inference refers to the process of determining whether an event or action caused a specific outcome, which involves the evaluation of cause-and-effect relationships in data. This paper presents a new approach to discover latent causal representations of crucial variables in easy-to-obtain data. The proposed method takes a form of trade-off between compression of input data and the causality between the learnt latent variables and critical variables, thereby removing the irrelevant information contained in input data and obtaining the decoupled, strongest causal factors. By introducing variational bounds and specific configurations, the optimisation objective is relaxed to a tractable problem. The approach compacts causal discovery and inference into one model, which is flexible to downstream tasks and parsimonious in the parameters. A case study on an exhaust-emission dataset shows that the proposed method improves the predictive performance over the baseline model, which is a variational information bottleneck model with the same hyperparameters.</p></div>\",\"PeriodicalId\":37894,\"journal\":{\"name\":\"IFAC-PapersOnLine\",\"volume\":\"58 14\",\"pages\":\"Pages 1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2405896324010462/pdf?md5=016627c030467dc8d74667395283c4b2&pid=1-s2.0-S2405896324010462-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IFAC-PapersOnLine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405896324010462\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IFAC-PapersOnLine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405896324010462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Discovering Latent Causal Variables Using a Trade-Off Between Compression and Causality♦
Causality is a fundamental relationship in the physical world, around which almost all activities of human life revolve. Causal inference refers to the process of determining whether an event or action caused a specific outcome, which involves the evaluation of cause-and-effect relationships in data. This paper presents a new approach to discover latent causal representations of crucial variables in easy-to-obtain data. The proposed method takes a form of trade-off between compression of input data and the causality between the learnt latent variables and critical variables, thereby removing the irrelevant information contained in input data and obtaining the decoupled, strongest causal factors. By introducing variational bounds and specific configurations, the optimisation objective is relaxed to a tractable problem. The approach compacts causal discovery and inference into one model, which is flexible to downstream tasks and parsimonious in the parameters. A case study on an exhaust-emission dataset shows that the proposed method improves the predictive performance over the baseline model, which is a variational information bottleneck model with the same hyperparameters.
期刊介绍:
All papers from IFAC meetings are published, in partnership with Elsevier, the IFAC Publisher, in theIFAC-PapersOnLine proceedings series hosted at the ScienceDirect web service. This series includes papers previously published in the IFAC website.The main features of the IFAC-PapersOnLine series are: -Online archive including papers from IFAC Symposia, Congresses, Conferences, and most Workshops. -All papers accepted at the meeting are published in PDF format - searchable and citable. -All papers published on the web site can be cited using the IFAC PapersOnLine ISSN and the individual paper DOI (Digital Object Identifier). The site is Open Access in nature - no charge is made to individuals for reading or downloading. Copyright of all papers belongs to IFAC and must be referenced if derivative journal papers are produced from the conference papers. All papers published in IFAC-PapersOnLine have undergone a peer review selection process according to the IFAC rules.