自动驾驶汽车第 4 级条件下商用汽车驾驶员反应时间和驾驶行为的存活分析

IF 3.5 2区 工程技术 Q1 PSYCHOLOGY, APPLIED
Ali Riahi Samani, Sabyasachee Mishra
{"title":"自动驾驶汽车第 4 级条件下商用汽车驾驶员反应时间和驾驶行为的存活分析","authors":"Ali Riahi Samani,&nbsp;Sabyasachee Mishra","doi":"10.1016/j.trf.2024.08.033","DOIUrl":null,"url":null,"abstract":"<div><p>The transition from automated to manual driving, referred as to Take-over conditions (TOC), in highly automated vehicles (e.g., SAE Level 4 or higher) is a subject of great interest to driver’s safety researchers, considering advancement of automotive technologies. While the literature has focused primarily on the post-take-over behavior of passenger car drivers, assessing different aspects of Commercial Motor Vehicle (CMV) drivers’ post-take-over behavior has received less attention, although it is anticipated that CMVs will be the first to vastly adopt highly automated technology. This paper aims to address the question of how long the effect of TOC lasts in CMV drivers and how automated operation duration before TOC, repeated TOC, and driver’s factors (i.e., age, gender, education, and driving history) affect the duration of TOC’s effect. To accomplish this, we designed a 40-minute experiment on a driving simulator and compared participants’ responses to TOC with continuous manual driving to first, assess significant changes in driving behavior indices (e.g., acceleration, velocity, and headway) in different time intervals and second, evaluate the survival patterns of unsafe behaviors (e.g., hard brakes, sharp turns, and speeding) over time. Multilevel Mixed-effect Linear Models and Multilevel Mixed-effect Parametric Survival Models are incorporated to assess the duration of TOC’s effects. Results showed that the first 10 s of TOC carries the most significant driving behavior changes while the probability of observing unsafe behaviors reduces significantly after 20 s. The results indicated that the effect of TOC lasts longer in long-automated operations, old drivers, and drivers with bad driving history, while repeated TOCs, showed positive effects on mediating the effect of this transition. The findings of this paper offer valuable insights to automotive companies and transportation planners on the nature of Take-over conditions.</p></div>","PeriodicalId":48355,"journal":{"name":"Transportation Research Part F-Traffic Psychology and Behaviour","volume":"107 ","pages":"Pages 149-166"},"PeriodicalIF":3.5000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How long the effect of take-over conditions Lasts? a survival analysis of Commercial Motor vehicle drivers’ reaction time and driving behavior in Level 4 of automated vehicles\",\"authors\":\"Ali Riahi Samani,&nbsp;Sabyasachee Mishra\",\"doi\":\"10.1016/j.trf.2024.08.033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The transition from automated to manual driving, referred as to Take-over conditions (TOC), in highly automated vehicles (e.g., SAE Level 4 or higher) is a subject of great interest to driver’s safety researchers, considering advancement of automotive technologies. While the literature has focused primarily on the post-take-over behavior of passenger car drivers, assessing different aspects of Commercial Motor Vehicle (CMV) drivers’ post-take-over behavior has received less attention, although it is anticipated that CMVs will be the first to vastly adopt highly automated technology. This paper aims to address the question of how long the effect of TOC lasts in CMV drivers and how automated operation duration before TOC, repeated TOC, and driver’s factors (i.e., age, gender, education, and driving history) affect the duration of TOC’s effect. To accomplish this, we designed a 40-minute experiment on a driving simulator and compared participants’ responses to TOC with continuous manual driving to first, assess significant changes in driving behavior indices (e.g., acceleration, velocity, and headway) in different time intervals and second, evaluate the survival patterns of unsafe behaviors (e.g., hard brakes, sharp turns, and speeding) over time. Multilevel Mixed-effect Linear Models and Multilevel Mixed-effect Parametric Survival Models are incorporated to assess the duration of TOC’s effects. Results showed that the first 10 s of TOC carries the most significant driving behavior changes while the probability of observing unsafe behaviors reduces significantly after 20 s. The results indicated that the effect of TOC lasts longer in long-automated operations, old drivers, and drivers with bad driving history, while repeated TOCs, showed positive effects on mediating the effect of this transition. The findings of this paper offer valuable insights to automotive companies and transportation planners on the nature of Take-over conditions.</p></div>\",\"PeriodicalId\":48355,\"journal\":{\"name\":\"Transportation Research Part F-Traffic Psychology and Behaviour\",\"volume\":\"107 \",\"pages\":\"Pages 149-166\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Research Part F-Traffic Psychology and Behaviour\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1369847824002407\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part F-Traffic Psychology and Behaviour","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369847824002407","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

考虑到汽车技术的发展,高度自动驾驶车辆(如 SAE 4 级或更高级别)从自动驾驶到手动驾驶的过渡,即接管条件(TOC),是驾驶员安全研究人员非常感兴趣的课题。尽管文献主要关注乘用车驾驶员的超车后行为,但对商用车(CMV)驾驶员不同方面的超车后行为评估却关注较少,尽管预计商用车将率先大量采用高度自动化技术。本文旨在探讨 TOC 对 CMV 驾驶员的影响会持续多久,以及 TOC 前的自动驾驶持续时间、重复 TOC 和驾驶员因素(即年龄、性别、教育程度和驾驶历史)对 TOC 影响持续时间的影响。为此,我们在驾驶模拟器上设计了一个 40 分钟的实验,将参与者对 TOC 的反应与连续手动驾驶进行比较,首先评估不同时间间隔内驾驶行为指数(如加速度、速度和车头距离)的显著变化,其次评估不安全行为(如急刹车、急转弯和超速)随时间推移的存续模式。采用多层次混合效应线性模型和多层次混合效应参数生存模型来评估 TOC 效果的持续时间。结果表明,TOC 对长期自动驾驶、年长驾驶员和有不良驾驶记录的驾驶员的影响持续时间更长,而重复 TOC 对调解这一转变的影响有积极作用。本文的研究结果为汽车公司和交通规划人员了解接管条件的性质提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
How long the effect of take-over conditions Lasts? a survival analysis of Commercial Motor vehicle drivers’ reaction time and driving behavior in Level 4 of automated vehicles

The transition from automated to manual driving, referred as to Take-over conditions (TOC), in highly automated vehicles (e.g., SAE Level 4 or higher) is a subject of great interest to driver’s safety researchers, considering advancement of automotive technologies. While the literature has focused primarily on the post-take-over behavior of passenger car drivers, assessing different aspects of Commercial Motor Vehicle (CMV) drivers’ post-take-over behavior has received less attention, although it is anticipated that CMVs will be the first to vastly adopt highly automated technology. This paper aims to address the question of how long the effect of TOC lasts in CMV drivers and how automated operation duration before TOC, repeated TOC, and driver’s factors (i.e., age, gender, education, and driving history) affect the duration of TOC’s effect. To accomplish this, we designed a 40-minute experiment on a driving simulator and compared participants’ responses to TOC with continuous manual driving to first, assess significant changes in driving behavior indices (e.g., acceleration, velocity, and headway) in different time intervals and second, evaluate the survival patterns of unsafe behaviors (e.g., hard brakes, sharp turns, and speeding) over time. Multilevel Mixed-effect Linear Models and Multilevel Mixed-effect Parametric Survival Models are incorporated to assess the duration of TOC’s effects. Results showed that the first 10 s of TOC carries the most significant driving behavior changes while the probability of observing unsafe behaviors reduces significantly after 20 s. The results indicated that the effect of TOC lasts longer in long-automated operations, old drivers, and drivers with bad driving history, while repeated TOCs, showed positive effects on mediating the effect of this transition. The findings of this paper offer valuable insights to automotive companies and transportation planners on the nature of Take-over conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.60
自引率
14.60%
发文量
239
审稿时长
71 days
期刊介绍: Transportation Research Part F: Traffic Psychology and Behaviour focuses on the behavioural and psychological aspects of traffic and transport. The aim of the journal is to enhance theory development, improve the quality of empirical studies and to stimulate the application of research findings in practice. TRF provides a focus and a means of communication for the considerable amount of research activities that are now being carried out in this field. The journal provides a forum for transportation researchers, psychologists, ergonomists, engineers and policy-makers with an interest in traffic and transport psychology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信