{"title":"飞机壁板测量点云数据的表面特征提取方法","authors":"Jiajue He, Wei Xiong","doi":"10.1016/j.jocs.2024.102427","DOIUrl":null,"url":null,"abstract":"<div><p>In the cloud, users need to connect to the data server to perform the file transmission via the Internet, and the Server transmits data to many servers. A machine or vehicle that can fly with the assistance of the air is known as an Aircraft. As an alternative to the downward thrust of jet engines, it uses either static lift or an airfoil's dynamic lift to combat gravity's pull. Drawing wall panel measurement points in the model is easy using the Aircraft Wall Panels (AWP) button. Draw wall panels between existing nodes or on the drawing grid using the relevant wall panel specifications. The technique intends to discover and extract information about undesirable defects such as dents, protrusions, or scratches based on local surface attributes gathered from a 3D scanner. Defects from a perfectly smooth surface include indentations and bumps on the surface. An image's features may be extracted by reducing the number of pixels in the picture to a manageable size so that the most exciting sections of the image can be recorded with Surface Feature Extraction (SFE). Some of the problems are the threat of drones and composite materials that do not break easily in oxymoronic. The aircraft's inner structure may have been damaged, although this is impossible to determine. A runway incursion severely threatens aviation safety because of the rise in aircraft movement on the airport surface and other human factors. An electronic moving map of airport runways and taxiways is shown to the pilot through a head-up display in the cockpit's head-down position. A practical feature extraction approach is required to ensure the safety of the airport scene in runway incursion prevention systems. All the drawbacks are rectified by AWP-SFE sensors installed along the runway centerline to detect magnetic signals generated by surface-moving targets, and this information is utilized to compute the target's length. The target length may extract peak features after regularizing the time domain data. Differentiation of target characteristics is used to determine the similarities between distinct targets. The suggested method's signal characteristics are more easily recognized than time domain or frequency domain feature methods. The experimental results show the proposed method AWP-SE to achieve a high-efficiency ratio of 88.2 %, activity ratio of 73.3 %, Analysis of aircraft in wall plane measurement point of 87.8 % and an error rate of 32.3 % compared to other methods.</p></div>","PeriodicalId":48907,"journal":{"name":"Journal of Computational Science","volume":"83 ","pages":"Article 102427"},"PeriodicalIF":3.1000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface feature extraction method for cloud data of aircraft wall panel measurement points\",\"authors\":\"Jiajue He, Wei Xiong\",\"doi\":\"10.1016/j.jocs.2024.102427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the cloud, users need to connect to the data server to perform the file transmission via the Internet, and the Server transmits data to many servers. A machine or vehicle that can fly with the assistance of the air is known as an Aircraft. As an alternative to the downward thrust of jet engines, it uses either static lift or an airfoil's dynamic lift to combat gravity's pull. Drawing wall panel measurement points in the model is easy using the Aircraft Wall Panels (AWP) button. Draw wall panels between existing nodes or on the drawing grid using the relevant wall panel specifications. The technique intends to discover and extract information about undesirable defects such as dents, protrusions, or scratches based on local surface attributes gathered from a 3D scanner. Defects from a perfectly smooth surface include indentations and bumps on the surface. An image's features may be extracted by reducing the number of pixels in the picture to a manageable size so that the most exciting sections of the image can be recorded with Surface Feature Extraction (SFE). Some of the problems are the threat of drones and composite materials that do not break easily in oxymoronic. The aircraft's inner structure may have been damaged, although this is impossible to determine. A runway incursion severely threatens aviation safety because of the rise in aircraft movement on the airport surface and other human factors. An electronic moving map of airport runways and taxiways is shown to the pilot through a head-up display in the cockpit's head-down position. A practical feature extraction approach is required to ensure the safety of the airport scene in runway incursion prevention systems. All the drawbacks are rectified by AWP-SFE sensors installed along the runway centerline to detect magnetic signals generated by surface-moving targets, and this information is utilized to compute the target's length. The target length may extract peak features after regularizing the time domain data. Differentiation of target characteristics is used to determine the similarities between distinct targets. The suggested method's signal characteristics are more easily recognized than time domain or frequency domain feature methods. The experimental results show the proposed method AWP-SE to achieve a high-efficiency ratio of 88.2 %, activity ratio of 73.3 %, Analysis of aircraft in wall plane measurement point of 87.8 % and an error rate of 32.3 % compared to other methods.</p></div>\",\"PeriodicalId\":48907,\"journal\":{\"name\":\"Journal of Computational Science\",\"volume\":\"83 \",\"pages\":\"Article 102427\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1877750324002205\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877750324002205","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Surface feature extraction method for cloud data of aircraft wall panel measurement points
In the cloud, users need to connect to the data server to perform the file transmission via the Internet, and the Server transmits data to many servers. A machine or vehicle that can fly with the assistance of the air is known as an Aircraft. As an alternative to the downward thrust of jet engines, it uses either static lift or an airfoil's dynamic lift to combat gravity's pull. Drawing wall panel measurement points in the model is easy using the Aircraft Wall Panels (AWP) button. Draw wall panels between existing nodes or on the drawing grid using the relevant wall panel specifications. The technique intends to discover and extract information about undesirable defects such as dents, protrusions, or scratches based on local surface attributes gathered from a 3D scanner. Defects from a perfectly smooth surface include indentations and bumps on the surface. An image's features may be extracted by reducing the number of pixels in the picture to a manageable size so that the most exciting sections of the image can be recorded with Surface Feature Extraction (SFE). Some of the problems are the threat of drones and composite materials that do not break easily in oxymoronic. The aircraft's inner structure may have been damaged, although this is impossible to determine. A runway incursion severely threatens aviation safety because of the rise in aircraft movement on the airport surface and other human factors. An electronic moving map of airport runways and taxiways is shown to the pilot through a head-up display in the cockpit's head-down position. A practical feature extraction approach is required to ensure the safety of the airport scene in runway incursion prevention systems. All the drawbacks are rectified by AWP-SFE sensors installed along the runway centerline to detect magnetic signals generated by surface-moving targets, and this information is utilized to compute the target's length. The target length may extract peak features after regularizing the time domain data. Differentiation of target characteristics is used to determine the similarities between distinct targets. The suggested method's signal characteristics are more easily recognized than time domain or frequency domain feature methods. The experimental results show the proposed method AWP-SE to achieve a high-efficiency ratio of 88.2 %, activity ratio of 73.3 %, Analysis of aircraft in wall plane measurement point of 87.8 % and an error rate of 32.3 % compared to other methods.
期刊介绍:
Computational Science is a rapidly growing multi- and interdisciplinary field that uses advanced computing and data analysis to understand and solve complex problems. It has reached a level of predictive capability that now firmly complements the traditional pillars of experimentation and theory.
The recent advances in experimental techniques such as detectors, on-line sensor networks and high-resolution imaging techniques, have opened up new windows into physical and biological processes at many levels of detail. The resulting data explosion allows for detailed data driven modeling and simulation.
This new discipline in science combines computational thinking, modern computational methods, devices and collateral technologies to address problems far beyond the scope of traditional numerical methods.
Computational science typically unifies three distinct elements:
• Modeling, Algorithms and Simulations (e.g. numerical and non-numerical, discrete and continuous);
• Software developed to solve science (e.g., biological, physical, and social), engineering, medicine, and humanities problems;
• Computer and information science that develops and optimizes the advanced system hardware, software, networking, and data management components (e.g. problem solving environments).