Shida Huo , Xinguang Wang , Zihao Tan , Yongmei Li , Yan Tao , Chunhua Zhang , Song Zhang , Xipeng Tao , Yunling Du , Yanhong Yang , Jide Liu , Jinlai Liu , Jinguo Li , Yizhou Zhou , Xiaofeng Sun
{"title":"第四代镍基单晶超级合金在中温条件下的拉伸性能和变形机制","authors":"Shida Huo , Xinguang Wang , Zihao Tan , Yongmei Li , Yan Tao , Chunhua Zhang , Song Zhang , Xipeng Tao , Yunling Du , Yanhong Yang , Jide Liu , Jinlai Liu , Jinguo Li , Yizhou Zhou , Xiaofeng Sun","doi":"10.1016/j.intermet.2024.108471","DOIUrl":null,"url":null,"abstract":"<div><p>This paper comprehensively explores the causes of intermediate-temperature brittleness of a fourth-generation Nickel-based single-crystal superalloy through a systematic study of tensile properties and deformation mechanisms at intermediate-temperatures. The research was performed at temperature of 700 °C, 800 °C, 850 °C and 900 °C. The experimental alloy demonstrated the highest yield strength of 914 MPa and worst plasticity at 800 °C. It was found that pure-shearing fracture occurred at 700 °C and 800 °C, while the fracture characteristics of shear fracture and ductile fracture were found at 850 °C and 900 °C. Then, the slip bands extended in the same direction at 700 °C and 800 °C. The phenomenon was different at 850 °C and 900 °C. These deformation traces extended in the different directions. At 700 °C and 800 °C, the partial dislocation with Burgers Vector of a/3 <112> shearing into the γ′ phases was the predominate deformation mechanism, while both the partial dislocation with Burgers Vector of a/3 <112> and the super-dislocation with Burgers Vector of a <110> and a <010> shearing into the γ′ phases were present at 850 °C and 900 °C. Nevertheless, the mechanism of the super-dislocation with Burgers Vector of a <110> and a <010> shearing γ′ phases pervaded in the alloy at 900 °C. In general, it was concluded that the alloy underwent intermediate-temperature brittleness at 800 °C in terms of the changes of fracture features, slip bands and dislocation configurations. The results of this study provided an experimental reference and guidance for improving the safe serviceability of the fourth-generation single crystal superalloy.</p></div>","PeriodicalId":331,"journal":{"name":"Intermetallics","volume":"175 ","pages":"Article 108471"},"PeriodicalIF":4.3000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tensile properties and deformation mechanisms of a fourth-generation nickel-based single crystal superalloy at intermediate temperatures\",\"authors\":\"Shida Huo , Xinguang Wang , Zihao Tan , Yongmei Li , Yan Tao , Chunhua Zhang , Song Zhang , Xipeng Tao , Yunling Du , Yanhong Yang , Jide Liu , Jinlai Liu , Jinguo Li , Yizhou Zhou , Xiaofeng Sun\",\"doi\":\"10.1016/j.intermet.2024.108471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper comprehensively explores the causes of intermediate-temperature brittleness of a fourth-generation Nickel-based single-crystal superalloy through a systematic study of tensile properties and deformation mechanisms at intermediate-temperatures. The research was performed at temperature of 700 °C, 800 °C, 850 °C and 900 °C. The experimental alloy demonstrated the highest yield strength of 914 MPa and worst plasticity at 800 °C. It was found that pure-shearing fracture occurred at 700 °C and 800 °C, while the fracture characteristics of shear fracture and ductile fracture were found at 850 °C and 900 °C. Then, the slip bands extended in the same direction at 700 °C and 800 °C. The phenomenon was different at 850 °C and 900 °C. These deformation traces extended in the different directions. At 700 °C and 800 °C, the partial dislocation with Burgers Vector of a/3 <112> shearing into the γ′ phases was the predominate deformation mechanism, while both the partial dislocation with Burgers Vector of a/3 <112> and the super-dislocation with Burgers Vector of a <110> and a <010> shearing into the γ′ phases were present at 850 °C and 900 °C. Nevertheless, the mechanism of the super-dislocation with Burgers Vector of a <110> and a <010> shearing γ′ phases pervaded in the alloy at 900 °C. In general, it was concluded that the alloy underwent intermediate-temperature brittleness at 800 °C in terms of the changes of fracture features, slip bands and dislocation configurations. The results of this study provided an experimental reference and guidance for improving the safe serviceability of the fourth-generation single crystal superalloy.</p></div>\",\"PeriodicalId\":331,\"journal\":{\"name\":\"Intermetallics\",\"volume\":\"175 \",\"pages\":\"Article 108471\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intermetallics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0966979524002905\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intermetallics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0966979524002905","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
本文通过系统研究第四代镍基单晶超级合金在中间温度下的拉伸性能和变形机制,全面探讨了其中间温度脆性的成因。研究在 700 ℃、800 ℃、850 ℃ 和 900 ℃ 温度下进行。实验合金在 800 °C 时的屈服强度最高,达到 914 兆帕,塑性最差。研究发现,纯剪切断裂发生在 700 °C 和 800 °C 时,而剪切断裂和韧性断裂的断裂特征则出现在 850 °C 和 900 °C 时。在 700 ℃ 和 800 ℃ 时,滑移带向同一方向延伸。这一现象在 850 °C 和 900 °C 时有所不同。这些变形痕迹向不同方向延伸。在700 °C和800 °C时,伯格斯矢量为a/3 <112>的部分位错剪切到γ′相是主要的变形机制,而在850 °C和900 °C时,伯格斯矢量为a/3 <112>的部分位错和伯格斯矢量为a <110>和a <010>的超位错剪切到γ′相都存在。然而,在 900 °C时,超位错机制与布尔格斯矢量的<110>和<010>剪切γ′相在合金中普遍存在。总之,从断口特征、滑移带和位错构型的变化来看,合金在 800 ℃ 时发生了中温脆性。该研究结果为提高第四代单晶超合金的安全适用性提供了实验参考和指导。
Tensile properties and deformation mechanisms of a fourth-generation nickel-based single crystal superalloy at intermediate temperatures
This paper comprehensively explores the causes of intermediate-temperature brittleness of a fourth-generation Nickel-based single-crystal superalloy through a systematic study of tensile properties and deformation mechanisms at intermediate-temperatures. The research was performed at temperature of 700 °C, 800 °C, 850 °C and 900 °C. The experimental alloy demonstrated the highest yield strength of 914 MPa and worst plasticity at 800 °C. It was found that pure-shearing fracture occurred at 700 °C and 800 °C, while the fracture characteristics of shear fracture and ductile fracture were found at 850 °C and 900 °C. Then, the slip bands extended in the same direction at 700 °C and 800 °C. The phenomenon was different at 850 °C and 900 °C. These deformation traces extended in the different directions. At 700 °C and 800 °C, the partial dislocation with Burgers Vector of a/3 <112> shearing into the γ′ phases was the predominate deformation mechanism, while both the partial dislocation with Burgers Vector of a/3 <112> and the super-dislocation with Burgers Vector of a <110> and a <010> shearing into the γ′ phases were present at 850 °C and 900 °C. Nevertheless, the mechanism of the super-dislocation with Burgers Vector of a <110> and a <010> shearing γ′ phases pervaded in the alloy at 900 °C. In general, it was concluded that the alloy underwent intermediate-temperature brittleness at 800 °C in terms of the changes of fracture features, slip bands and dislocation configurations. The results of this study provided an experimental reference and guidance for improving the safe serviceability of the fourth-generation single crystal superalloy.
期刊介绍:
This journal is a platform for publishing innovative research and overviews for advancing our understanding of the structure, property, and functionality of complex metallic alloys, including intermetallics, metallic glasses, and high entropy alloys.
The journal reports the science and engineering of metallic materials in the following aspects:
Theories and experiments which address the relationship between property and structure in all length scales.
Physical modeling and numerical simulations which provide a comprehensive understanding of experimental observations.
Stimulated methodologies to characterize the structure and chemistry of materials that correlate the properties.
Technological applications resulting from the understanding of property-structure relationship in materials.
Novel and cutting-edge results warranting rapid communication.
The journal also publishes special issues on selected topics and overviews by invitation only.