{"title":"往复式压缩机的故障分类:机器学习与深度学习方法的比较⁎","authors":"René-Vinicio Sánchez , Jean-Carlo Macancela , Diego Cabrera , Mariela Cerrada","doi":"10.1016/j.ifacol.2024.08.066","DOIUrl":null,"url":null,"abstract":"<div><p>This study compares methodologies for fault classification in reciprocating compressors, focusing on traditional Machine Learning (ML) with classical feature extraction processes and one-dimensional Convolutional Neural Networks (1D-CNN) in Deep Learning (DL). Both techniques demonstrated viability by employing a dataset of compressor vibration signals encompassing ten fault classes. While ML achieved a classification accuracy of 86%, DL reached 90.709%, highlighting its superior learning and generalization abilities, although with longer training times. These findings suggest that, despite ML being effective when relevant prior knowledge is available, DL, particularly with 1D-CNN, offers enhanced fault classification performance for this study case at the expense of additional processing resources.</p></div>","PeriodicalId":37894,"journal":{"name":"IFAC-PapersOnLine","volume":"58 8","pages":"Pages 157-161"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405896324007833/pdf?md5=e93773c2764fc0480f7a78a8a962791f&pid=1-s2.0-S2405896324007833-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Fault Classification in Reciprocating Compressors: A Comparison of Machine Learning and Deep Learning Approaches⁎\",\"authors\":\"René-Vinicio Sánchez , Jean-Carlo Macancela , Diego Cabrera , Mariela Cerrada\",\"doi\":\"10.1016/j.ifacol.2024.08.066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study compares methodologies for fault classification in reciprocating compressors, focusing on traditional Machine Learning (ML) with classical feature extraction processes and one-dimensional Convolutional Neural Networks (1D-CNN) in Deep Learning (DL). Both techniques demonstrated viability by employing a dataset of compressor vibration signals encompassing ten fault classes. While ML achieved a classification accuracy of 86%, DL reached 90.709%, highlighting its superior learning and generalization abilities, although with longer training times. These findings suggest that, despite ML being effective when relevant prior knowledge is available, DL, particularly with 1D-CNN, offers enhanced fault classification performance for this study case at the expense of additional processing resources.</p></div>\",\"PeriodicalId\":37894,\"journal\":{\"name\":\"IFAC-PapersOnLine\",\"volume\":\"58 8\",\"pages\":\"Pages 157-161\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2405896324007833/pdf?md5=e93773c2764fc0480f7a78a8a962791f&pid=1-s2.0-S2405896324007833-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IFAC-PapersOnLine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405896324007833\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IFAC-PapersOnLine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405896324007833","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Fault Classification in Reciprocating Compressors: A Comparison of Machine Learning and Deep Learning Approaches⁎
This study compares methodologies for fault classification in reciprocating compressors, focusing on traditional Machine Learning (ML) with classical feature extraction processes and one-dimensional Convolutional Neural Networks (1D-CNN) in Deep Learning (DL). Both techniques demonstrated viability by employing a dataset of compressor vibration signals encompassing ten fault classes. While ML achieved a classification accuracy of 86%, DL reached 90.709%, highlighting its superior learning and generalization abilities, although with longer training times. These findings suggest that, despite ML being effective when relevant prior knowledge is available, DL, particularly with 1D-CNN, offers enhanced fault classification performance for this study case at the expense of additional processing resources.
期刊介绍:
All papers from IFAC meetings are published, in partnership with Elsevier, the IFAC Publisher, in theIFAC-PapersOnLine proceedings series hosted at the ScienceDirect web service. This series includes papers previously published in the IFAC website.The main features of the IFAC-PapersOnLine series are: -Online archive including papers from IFAC Symposia, Congresses, Conferences, and most Workshops. -All papers accepted at the meeting are published in PDF format - searchable and citable. -All papers published on the web site can be cited using the IFAC PapersOnLine ISSN and the individual paper DOI (Digital Object Identifier). The site is Open Access in nature - no charge is made to individuals for reading or downloading. Copyright of all papers belongs to IFAC and must be referenced if derivative journal papers are produced from the conference papers. All papers published in IFAC-PapersOnLine have undergone a peer review selection process according to the IFAC rules.