低温空气暴露和浸泡对中华绒螯蟹抗氧化、免疫、肠道菌群和代谢组的影响

IF 2.2 2区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Xiangyi Deng , Zhiqiang Li , Liang Luo , Shihui Wang , Rui Zhang , Kun Guo , Yuhong Yang , Zhigang Zhao
{"title":"低温空气暴露和浸泡对中华绒螯蟹抗氧化、免疫、肠道菌群和代谢组的影响","authors":"Xiangyi Deng ,&nbsp;Zhiqiang Li ,&nbsp;Liang Luo ,&nbsp;Shihui Wang ,&nbsp;Rui Zhang ,&nbsp;Kun Guo ,&nbsp;Yuhong Yang ,&nbsp;Zhigang Zhao","doi":"10.1016/j.cbd.2024.101319","DOIUrl":null,"url":null,"abstract":"<div><p>The aim of this study was to investigate the effects of immersion on immune enzyme activity, haemolymph index, intestinal microbiome and metabolome of <em>E. sinensis</em> after low temperature air exposure. The results showed that low temperature air exposure induced stress response, which led to hepatopancreas injury and increased membrane permeability, but this situation was reversible and alleviated after immersion. In addition, after exposure to low temperature air, haemolymph metabolism-related substances such as glucose and total cholesterol were significantly different from the initial value (<em>P</em> &lt; 0.05), and gradually returned to the initial level after immersion. The changes of intestinal flora and hepatopancreas metabolism caused by low temperature air exposure did not fully recover after immersion, and its negative effects did not completely disappear. The sequencing results showed that the species composition and diversity of intestinal microorganisms of Chinese mitten crabs were changed after low temperature air exposure and immersion treatment. The relative abundance of <em>Bacteroidetes</em> and <em>Proteobacteria</em> were increased, while the relative abundance of <em>Firmicutes</em> was decreased (<em>P</em> &lt; 0.05). Metabolomics analysis showed that lysine levels increased significantly, taurocholic acid levels decreased significantly, and amino acid metabolism and lipid metabolism balance were disturbed in hepatopancreas of <em>E. sinensis</em> after exposure to low temperature air and immersion (<em>P</em> &lt; 0.05). This study will provide new insights into the recovery mechanism of water immersion on Chinese mitten crabs after exposure to air.</p></div>","PeriodicalId":55235,"journal":{"name":"Comparative Biochemistry and Physiology D-Genomics & Proteomics","volume":"52 ","pages":"Article 101319"},"PeriodicalIF":2.2000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of low temperature air exposure and immersion on antioxidant, immune, intestinal flora and metabolome of Chinese mitten crab (Eriocheir sinensis)\",\"authors\":\"Xiangyi Deng ,&nbsp;Zhiqiang Li ,&nbsp;Liang Luo ,&nbsp;Shihui Wang ,&nbsp;Rui Zhang ,&nbsp;Kun Guo ,&nbsp;Yuhong Yang ,&nbsp;Zhigang Zhao\",\"doi\":\"10.1016/j.cbd.2024.101319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The aim of this study was to investigate the effects of immersion on immune enzyme activity, haemolymph index, intestinal microbiome and metabolome of <em>E. sinensis</em> after low temperature air exposure. The results showed that low temperature air exposure induced stress response, which led to hepatopancreas injury and increased membrane permeability, but this situation was reversible and alleviated after immersion. In addition, after exposure to low temperature air, haemolymph metabolism-related substances such as glucose and total cholesterol were significantly different from the initial value (<em>P</em> &lt; 0.05), and gradually returned to the initial level after immersion. The changes of intestinal flora and hepatopancreas metabolism caused by low temperature air exposure did not fully recover after immersion, and its negative effects did not completely disappear. The sequencing results showed that the species composition and diversity of intestinal microorganisms of Chinese mitten crabs were changed after low temperature air exposure and immersion treatment. The relative abundance of <em>Bacteroidetes</em> and <em>Proteobacteria</em> were increased, while the relative abundance of <em>Firmicutes</em> was decreased (<em>P</em> &lt; 0.05). Metabolomics analysis showed that lysine levels increased significantly, taurocholic acid levels decreased significantly, and amino acid metabolism and lipid metabolism balance were disturbed in hepatopancreas of <em>E. sinensis</em> after exposure to low temperature air and immersion (<em>P</em> &lt; 0.05). This study will provide new insights into the recovery mechanism of water immersion on Chinese mitten crabs after exposure to air.</p></div>\",\"PeriodicalId\":55235,\"journal\":{\"name\":\"Comparative Biochemistry and Physiology D-Genomics & Proteomics\",\"volume\":\"52 \",\"pages\":\"Article 101319\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comparative Biochemistry and Physiology D-Genomics & Proteomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1744117X24001321\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology D-Genomics & Proteomics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1744117X24001321","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在探讨低温空气暴露后浸泡对中华绒螯虾免疫酶活性、血淋巴指数、肠道微生物组和代谢组的影响。结果表明,低温空气暴露会诱发应激反应,导致肝胰腺损伤和膜通透性增加,但这种情况在浸泡后是可逆的并得到缓解。此外,暴露于低温空气后,血淋巴代谢相关物质如葡萄糖和总胆固醇与初始值有显著差异(P
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Effects of low temperature air exposure and immersion on antioxidant, immune, intestinal flora and metabolome of Chinese mitten crab (Eriocheir sinensis)

Effects of low temperature air exposure and immersion on antioxidant, immune, intestinal flora and metabolome of Chinese mitten crab (Eriocheir sinensis)

The aim of this study was to investigate the effects of immersion on immune enzyme activity, haemolymph index, intestinal microbiome and metabolome of E. sinensis after low temperature air exposure. The results showed that low temperature air exposure induced stress response, which led to hepatopancreas injury and increased membrane permeability, but this situation was reversible and alleviated after immersion. In addition, after exposure to low temperature air, haemolymph metabolism-related substances such as glucose and total cholesterol were significantly different from the initial value (P < 0.05), and gradually returned to the initial level after immersion. The changes of intestinal flora and hepatopancreas metabolism caused by low temperature air exposure did not fully recover after immersion, and its negative effects did not completely disappear. The sequencing results showed that the species composition and diversity of intestinal microorganisms of Chinese mitten crabs were changed after low temperature air exposure and immersion treatment. The relative abundance of Bacteroidetes and Proteobacteria were increased, while the relative abundance of Firmicutes was decreased (P < 0.05). Metabolomics analysis showed that lysine levels increased significantly, taurocholic acid levels decreased significantly, and amino acid metabolism and lipid metabolism balance were disturbed in hepatopancreas of E. sinensis after exposure to low temperature air and immersion (P < 0.05). This study will provide new insights into the recovery mechanism of water immersion on Chinese mitten crabs after exposure to air.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.10
自引率
3.30%
发文量
69
审稿时长
33 days
期刊介绍: Comparative Biochemistry & Physiology (CBP) publishes papers in comparative, environmental and evolutionary physiology. Part D: Genomics and Proteomics (CBPD), focuses on “omics” approaches to physiology, including comparative and functional genomics, metagenomics, transcriptomics, proteomics, metabolomics, and lipidomics. Most studies employ “omics” and/or system biology to test specific hypotheses about molecular and biochemical mechanisms underlying physiological responses to the environment. We encourage papers that address fundamental questions in comparative physiology and biochemistry rather than studies with a focus that is purely technical, methodological or descriptive in nature.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信