Anagha Tapaswi , Nicholas Cemalovic , Katelyn M. Polemi , Jonathan Z. Sexton , Justin A. Colacino
{"title":"应用非致癌乳腺细胞中的细胞绘画来了解常见化学品暴露的影响。","authors":"Anagha Tapaswi , Nicholas Cemalovic , Katelyn M. Polemi , Jonathan Z. Sexton , Justin A. Colacino","doi":"10.1016/j.tiv.2024.105935","DOIUrl":null,"url":null,"abstract":"<div><p>The general population is exposed to many chemicals which have putative, but incompletely understood, links to breast cancer. Cell Painting is a high-content imaging-based in vitro assay that allows for unbiased measurements of concentration-dependent effects of chemical exposures on cellular morphology. We used Cell Painting to measure effects of 16 human exposure relevant chemicals, along with 21 small molecules with known mechanisms of action, in non-tumorigenic mammary epithelial cells, the MCF10A cell line. Using CellProfiler image analysis software, we quantified 3042 morphological features across approximately 1.2 million cells. We used benchmark concentration modeling to identify features both conserved and different across chemicals. Benchmark concentrations were compared to exposure biomarker concentration measurements from the National Health and Nutrition Examination Survey to assess which chemicals induce morphological alterations at human-relevant concentrations. We found significant feature overlaps between chemicals, including similarities between the organochlorine pesticide DDT metabolite p,p’-DDE and an activator of Wnt signaling CHIR99201. We validated these findings by assaying the activation of Wnt, as reflected by translocation of ꞵ-catenin, following p’-p’ DDE exposure. Consistent with Wnt signaling activation, low concentration p’,p’-DDE (25 nM) significantly enhanced the nuclear translocation of ꞵ-catenin. Overall, these findings highlight the ability of Cell Painting to enhance mode-of-action studies for toxicants which are common in our environment but incompletely characterized with respect to breast cancer risk.</p></div>","PeriodicalId":54423,"journal":{"name":"Toxicology in Vitro","volume":"101 ","pages":"Article 105935"},"PeriodicalIF":2.6000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Applying cell painting in non-tumorigenic breast cells to understand impacts of common chemical exposures\",\"authors\":\"Anagha Tapaswi , Nicholas Cemalovic , Katelyn M. Polemi , Jonathan Z. Sexton , Justin A. Colacino\",\"doi\":\"10.1016/j.tiv.2024.105935\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The general population is exposed to many chemicals which have putative, but incompletely understood, links to breast cancer. Cell Painting is a high-content imaging-based in vitro assay that allows for unbiased measurements of concentration-dependent effects of chemical exposures on cellular morphology. We used Cell Painting to measure effects of 16 human exposure relevant chemicals, along with 21 small molecules with known mechanisms of action, in non-tumorigenic mammary epithelial cells, the MCF10A cell line. Using CellProfiler image analysis software, we quantified 3042 morphological features across approximately 1.2 million cells. We used benchmark concentration modeling to identify features both conserved and different across chemicals. Benchmark concentrations were compared to exposure biomarker concentration measurements from the National Health and Nutrition Examination Survey to assess which chemicals induce morphological alterations at human-relevant concentrations. We found significant feature overlaps between chemicals, including similarities between the organochlorine pesticide DDT metabolite p,p’-DDE and an activator of Wnt signaling CHIR99201. We validated these findings by assaying the activation of Wnt, as reflected by translocation of ꞵ-catenin, following p’-p’ DDE exposure. Consistent with Wnt signaling activation, low concentration p’,p’-DDE (25 nM) significantly enhanced the nuclear translocation of ꞵ-catenin. Overall, these findings highlight the ability of Cell Painting to enhance mode-of-action studies for toxicants which are common in our environment but incompletely characterized with respect to breast cancer risk.</p></div>\",\"PeriodicalId\":54423,\"journal\":{\"name\":\"Toxicology in Vitro\",\"volume\":\"101 \",\"pages\":\"Article 105935\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicology in Vitro\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0887233324001656\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology in Vitro","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0887233324001656","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TOXICOLOGY","Score":null,"Total":0}
Applying cell painting in non-tumorigenic breast cells to understand impacts of common chemical exposures
The general population is exposed to many chemicals which have putative, but incompletely understood, links to breast cancer. Cell Painting is a high-content imaging-based in vitro assay that allows for unbiased measurements of concentration-dependent effects of chemical exposures on cellular morphology. We used Cell Painting to measure effects of 16 human exposure relevant chemicals, along with 21 small molecules with known mechanisms of action, in non-tumorigenic mammary epithelial cells, the MCF10A cell line. Using CellProfiler image analysis software, we quantified 3042 morphological features across approximately 1.2 million cells. We used benchmark concentration modeling to identify features both conserved and different across chemicals. Benchmark concentrations were compared to exposure biomarker concentration measurements from the National Health and Nutrition Examination Survey to assess which chemicals induce morphological alterations at human-relevant concentrations. We found significant feature overlaps between chemicals, including similarities between the organochlorine pesticide DDT metabolite p,p’-DDE and an activator of Wnt signaling CHIR99201. We validated these findings by assaying the activation of Wnt, as reflected by translocation of ꞵ-catenin, following p’-p’ DDE exposure. Consistent with Wnt signaling activation, low concentration p’,p’-DDE (25 nM) significantly enhanced the nuclear translocation of ꞵ-catenin. Overall, these findings highlight the ability of Cell Painting to enhance mode-of-action studies for toxicants which are common in our environment but incompletely characterized with respect to breast cancer risk.
期刊介绍:
Toxicology in Vitro publishes original research papers and reviews on the application and use of in vitro systems for assessing or predicting the toxic effects of chemicals and elucidating their mechanisms of action. These in vitro techniques include utilizing cell or tissue cultures, isolated cells, tissue slices, subcellular fractions, transgenic cell cultures, and cells from transgenic organisms, as well as in silico modelling. The Journal will focus on investigations that involve the development and validation of new in vitro methods, e.g. for prediction of toxic effects based on traditional and in silico modelling; on the use of methods in high-throughput toxicology and pharmacology; elucidation of mechanisms of toxic action; the application of genomics, transcriptomics and proteomics in toxicology, as well as on comparative studies that characterise the relationship between in vitro and in vivo findings. The Journal strongly encourages the submission of manuscripts that focus on the development of in vitro methods, their practical applications and regulatory use (e.g. in the areas of food components cosmetics, pharmaceuticals, pesticides, and industrial chemicals). Toxicology in Vitro discourages papers that record reporting on toxicological effects from materials, such as plant extracts or herbal medicines, that have not been chemically characterized.