William Ndzimbong, Nicolas Thome, Cyril Fourniol, Yvonne Keeza, Benoît Sauer, Jacques Marescaux, Daniel George, Alexandre Hostettler, Toby Collins
{"title":"三维超声波和 CT 图像中肾脏的全局配准。","authors":"William Ndzimbong, Nicolas Thome, Cyril Fourniol, Yvonne Keeza, Benoît Sauer, Jacques Marescaux, Daniel George, Alexandre Hostettler, Toby Collins","doi":"10.1007/s11548-024-03255-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Automatic registration between abdominal ultrasound (US) and computed tomography (CT) images is needed to enhance interventional guidance of renal procedures, but it remains an open research challenge. We propose a novel method that doesn't require an initial registration estimate (a global method) and also handles registration ambiguity caused by the organ's natural symmetry. Combined with a registration refinement algorithm, this method achieves robust and accurate kidney registration while avoiding manual initialization.</p><p><strong>Methods: </strong>We propose solving global registration in a three-step approach: (1) Automatic anatomical landmark localization, where 2 deep neural networks (DNNs) localize a set of landmarks in each modality. (2) Registration hypothesis generation, where potential registrations are computed from the landmarks with a deterministic variant of RANSAC. Due to the Kidney's strong bilateral symmetry, there are usually 2 compatible solutions. Finally, in Step (3), the correct solution is determined automatically, using a DNN classifier that resolves the geometric ambiguity. The registration may then be iteratively improved with a registration refinement method. Results are presented with state-of-the-art surface-based refinement-Bayesian coherent point drift (BCPD).</p><p><strong>Results: </strong>This automatic global registration approach gives better results than various competitive state-of-the-art methods, which, additionally, require organ segmentation. The results obtained on 59 pairs of 3D US/CT kidney images show that the proposed method, combined with BCPD refinement, achieves a target registration error (TRE) of an internal kidney landmark (the renal pelvis) of 5.78 mm and an average nearest neighbor surface distance (nndist) of 2.42 mm.</p><p><strong>Conclusion: </strong>This work presents the first approach for automatic kidney registration in US and CT images, which doesn't require an initial manual registration estimate to be known a priori. The results show a fully automatic registration approach with performances comparable to manual methods is feasible.</p>","PeriodicalId":51251,"journal":{"name":"International Journal of Computer Assisted Radiology and Surgery","volume":" ","pages":"65-75"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global registration of kidneys in 3D ultrasound and CT images.\",\"authors\":\"William Ndzimbong, Nicolas Thome, Cyril Fourniol, Yvonne Keeza, Benoît Sauer, Jacques Marescaux, Daniel George, Alexandre Hostettler, Toby Collins\",\"doi\":\"10.1007/s11548-024-03255-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Automatic registration between abdominal ultrasound (US) and computed tomography (CT) images is needed to enhance interventional guidance of renal procedures, but it remains an open research challenge. We propose a novel method that doesn't require an initial registration estimate (a global method) and also handles registration ambiguity caused by the organ's natural symmetry. Combined with a registration refinement algorithm, this method achieves robust and accurate kidney registration while avoiding manual initialization.</p><p><strong>Methods: </strong>We propose solving global registration in a three-step approach: (1) Automatic anatomical landmark localization, where 2 deep neural networks (DNNs) localize a set of landmarks in each modality. (2) Registration hypothesis generation, where potential registrations are computed from the landmarks with a deterministic variant of RANSAC. Due to the Kidney's strong bilateral symmetry, there are usually 2 compatible solutions. Finally, in Step (3), the correct solution is determined automatically, using a DNN classifier that resolves the geometric ambiguity. The registration may then be iteratively improved with a registration refinement method. Results are presented with state-of-the-art surface-based refinement-Bayesian coherent point drift (BCPD).</p><p><strong>Results: </strong>This automatic global registration approach gives better results than various competitive state-of-the-art methods, which, additionally, require organ segmentation. The results obtained on 59 pairs of 3D US/CT kidney images show that the proposed method, combined with BCPD refinement, achieves a target registration error (TRE) of an internal kidney landmark (the renal pelvis) of 5.78 mm and an average nearest neighbor surface distance (nndist) of 2.42 mm.</p><p><strong>Conclusion: </strong>This work presents the first approach for automatic kidney registration in US and CT images, which doesn't require an initial manual registration estimate to be known a priori. The results show a fully automatic registration approach with performances comparable to manual methods is feasible.</p>\",\"PeriodicalId\":51251,\"journal\":{\"name\":\"International Journal of Computer Assisted Radiology and Surgery\",\"volume\":\" \",\"pages\":\"65-75\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Assisted Radiology and Surgery\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11548-024-03255-3\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Assisted Radiology and Surgery","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11548-024-03255-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Global registration of kidneys in 3D ultrasound and CT images.
Purpose: Automatic registration between abdominal ultrasound (US) and computed tomography (CT) images is needed to enhance interventional guidance of renal procedures, but it remains an open research challenge. We propose a novel method that doesn't require an initial registration estimate (a global method) and also handles registration ambiguity caused by the organ's natural symmetry. Combined with a registration refinement algorithm, this method achieves robust and accurate kidney registration while avoiding manual initialization.
Methods: We propose solving global registration in a three-step approach: (1) Automatic anatomical landmark localization, where 2 deep neural networks (DNNs) localize a set of landmarks in each modality. (2) Registration hypothesis generation, where potential registrations are computed from the landmarks with a deterministic variant of RANSAC. Due to the Kidney's strong bilateral symmetry, there are usually 2 compatible solutions. Finally, in Step (3), the correct solution is determined automatically, using a DNN classifier that resolves the geometric ambiguity. The registration may then be iteratively improved with a registration refinement method. Results are presented with state-of-the-art surface-based refinement-Bayesian coherent point drift (BCPD).
Results: This automatic global registration approach gives better results than various competitive state-of-the-art methods, which, additionally, require organ segmentation. The results obtained on 59 pairs of 3D US/CT kidney images show that the proposed method, combined with BCPD refinement, achieves a target registration error (TRE) of an internal kidney landmark (the renal pelvis) of 5.78 mm and an average nearest neighbor surface distance (nndist) of 2.42 mm.
Conclusion: This work presents the first approach for automatic kidney registration in US and CT images, which doesn't require an initial manual registration estimate to be known a priori. The results show a fully automatic registration approach with performances comparable to manual methods is feasible.
期刊介绍:
The International Journal for Computer Assisted Radiology and Surgery (IJCARS) is a peer-reviewed journal that provides a platform for closing the gap between medical and technical disciplines, and encourages interdisciplinary research and development activities in an international environment.