Annabelle R. Iken , Rudolf W. Poolman , Maaike G.J. Gademan
{"title":"公共试验数据库中介入试验的数据质量评估。","authors":"Annabelle R. Iken , Rudolf W. Poolman , Maaike G.J. Gademan","doi":"10.1016/j.jclinepi.2024.111516","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>High-quality data entry in clinical trial databases is crucial to the usefulness, validity, and replicability of research findings, as it influences evidence-based medical practice and future research. Our aim is to assess the quality of self-reported data in trial registries and present practical and systematic methods for identifying and evaluating data quality.</div></div><div><h3>Study Design and Setting</h3><div>We searched ClinicalTrials.Gov (CTG) for interventional total knee arthroplasty (TKA) trials between 2000 and 2015. We extracted required and optional trial information elements and used the CTG's variables' definitions. We performed a literature review on data quality reporting on frameworks, checklists, and overviews of irregularities in healthcare databases. We identified and assessed data quality attributes as follows: consistency, accuracy, completeness, and timeliness.</div></div><div><h3>Results</h3><div>We included 816 interventional TKA trials. Data irregularities varied widely: 0%–100%. Inconsistency ranged from 0% to 36%, and most often nonrandomized labeled allocation was combined with a “single-group” assignment trial design. Inaccuracy ranged from 0% to 100%. Incompleteness ranged from 0% to 61%; 61% of finished TKA trials did not report their outcome. With regard to irregularities in timeliness, 49% of the trials were registered more than 3 months after the start date.</div></div><div><h3>Conclusion</h3><div>We found significant variations in the data quality of registered clinical TKA trials. Trial sponsors should be committed to ensuring that the information they provide is reliable, consistent, up-to-date, transparent, and accurate. CTG's users need to be critical when drawing conclusions based on the registered data. We believe this awareness will increase well-informed decisions about published articles and treatment protocols, including replicating and improving trial designs.</div></div>","PeriodicalId":51079,"journal":{"name":"Journal of Clinical Epidemiology","volume":"175 ","pages":"Article 111516"},"PeriodicalIF":7.3000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data quality assessment of interventional trials in public trial databases\",\"authors\":\"Annabelle R. Iken , Rudolf W. Poolman , Maaike G.J. Gademan\",\"doi\":\"10.1016/j.jclinepi.2024.111516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objective</h3><div>High-quality data entry in clinical trial databases is crucial to the usefulness, validity, and replicability of research findings, as it influences evidence-based medical practice and future research. Our aim is to assess the quality of self-reported data in trial registries and present practical and systematic methods for identifying and evaluating data quality.</div></div><div><h3>Study Design and Setting</h3><div>We searched ClinicalTrials.Gov (CTG) for interventional total knee arthroplasty (TKA) trials between 2000 and 2015. We extracted required and optional trial information elements and used the CTG's variables' definitions. We performed a literature review on data quality reporting on frameworks, checklists, and overviews of irregularities in healthcare databases. We identified and assessed data quality attributes as follows: consistency, accuracy, completeness, and timeliness.</div></div><div><h3>Results</h3><div>We included 816 interventional TKA trials. Data irregularities varied widely: 0%–100%. Inconsistency ranged from 0% to 36%, and most often nonrandomized labeled allocation was combined with a “single-group” assignment trial design. Inaccuracy ranged from 0% to 100%. Incompleteness ranged from 0% to 61%; 61% of finished TKA trials did not report their outcome. With regard to irregularities in timeliness, 49% of the trials were registered more than 3 months after the start date.</div></div><div><h3>Conclusion</h3><div>We found significant variations in the data quality of registered clinical TKA trials. Trial sponsors should be committed to ensuring that the information they provide is reliable, consistent, up-to-date, transparent, and accurate. CTG's users need to be critical when drawing conclusions based on the registered data. We believe this awareness will increase well-informed decisions about published articles and treatment protocols, including replicating and improving trial designs.</div></div>\",\"PeriodicalId\":51079,\"journal\":{\"name\":\"Journal of Clinical Epidemiology\",\"volume\":\"175 \",\"pages\":\"Article 111516\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Clinical Epidemiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0895435624002725\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Epidemiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0895435624002725","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
Data quality assessment of interventional trials in public trial databases
Objective
High-quality data entry in clinical trial databases is crucial to the usefulness, validity, and replicability of research findings, as it influences evidence-based medical practice and future research. Our aim is to assess the quality of self-reported data in trial registries and present practical and systematic methods for identifying and evaluating data quality.
Study Design and Setting
We searched ClinicalTrials.Gov (CTG) for interventional total knee arthroplasty (TKA) trials between 2000 and 2015. We extracted required and optional trial information elements and used the CTG's variables' definitions. We performed a literature review on data quality reporting on frameworks, checklists, and overviews of irregularities in healthcare databases. We identified and assessed data quality attributes as follows: consistency, accuracy, completeness, and timeliness.
Results
We included 816 interventional TKA trials. Data irregularities varied widely: 0%–100%. Inconsistency ranged from 0% to 36%, and most often nonrandomized labeled allocation was combined with a “single-group” assignment trial design. Inaccuracy ranged from 0% to 100%. Incompleteness ranged from 0% to 61%; 61% of finished TKA trials did not report their outcome. With regard to irregularities in timeliness, 49% of the trials were registered more than 3 months after the start date.
Conclusion
We found significant variations in the data quality of registered clinical TKA trials. Trial sponsors should be committed to ensuring that the information they provide is reliable, consistent, up-to-date, transparent, and accurate. CTG's users need to be critical when drawing conclusions based on the registered data. We believe this awareness will increase well-informed decisions about published articles and treatment protocols, including replicating and improving trial designs.
期刊介绍:
The Journal of Clinical Epidemiology strives to enhance the quality of clinical and patient-oriented healthcare research by advancing and applying innovative methods in conducting, presenting, synthesizing, disseminating, and translating research results into optimal clinical practice. Special emphasis is placed on training new generations of scientists and clinical practice leaders.