{"title":"利用机器学习和心电图波形分析对子宫收缩引起的疼痛加强分娩疼痛监测。","authors":"Yuan-Chia Chu, Saint Shiou-Sheng Chen, Kuen-Bao Chen, Jui-Sheng Sun, Tzu-Kuei Shen, Li-Kuei Chen","doi":"10.1186/s13040-024-00383-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>This study aims to develop an innovative approach for monitoring and assessing labor pain through ECG waveform analysis, utilizing machine learning techniques to monitor pain resulting from uterine contractions.</p><p><strong>Methods: </strong>The study was conducted at National Taiwan University Hospital between January and July 2020. We collected a dataset of 6010 ECG samples from women preparing for natural spontaneous delivery (NSD). The ECG data was used to develop an ECG waveform-based Nociception Monitoring Index (NoM). The dataset was divided into training (80%) and validation (20%) sets. Multiple machine learning models, including LightGBM, XGBoost, SnapLogisticRegression, and SnapDecisionTree, were developed and evaluated. Hyperparameter optimization was performed using grid search and five-fold cross-validation to enhance model performance.</p><p><strong>Results: </strong>The LightGBM model demonstrated superior performance with an AUC of 0.96 and an accuracy of 90%, making it the optimal model for monitoring labor pain based on ECG data. Other models, such as XGBoost and SnapLogisticRegression, also showed strong performance, with AUC values ranging from 0.88 to 0.95.</p><p><strong>Conclusions: </strong>This study demonstrates that the integration of machine learning algorithms with ECG data significantly enhances the accuracy and reliability of labor pain monitoring. Specifically, the LightGBM model exhibits exceptional precision and robustness in continuous pain monitoring during labor, with potential applicability extending to broader healthcare settings.</p><p><strong>Trial registration: </strong>ClinicalTrials.gov Identifier: NCT04461704.</p>","PeriodicalId":48947,"journal":{"name":"Biodata Mining","volume":"17 1","pages":"32"},"PeriodicalIF":4.0000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11380346/pdf/","citationCount":"0","resultStr":"{\"title\":\"Enhanced labor pain monitoring using machine learning and ECG waveform analysis for uterine contraction-induced pain.\",\"authors\":\"Yuan-Chia Chu, Saint Shiou-Sheng Chen, Kuen-Bao Chen, Jui-Sheng Sun, Tzu-Kuei Shen, Li-Kuei Chen\",\"doi\":\"10.1186/s13040-024-00383-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>This study aims to develop an innovative approach for monitoring and assessing labor pain through ECG waveform analysis, utilizing machine learning techniques to monitor pain resulting from uterine contractions.</p><p><strong>Methods: </strong>The study was conducted at National Taiwan University Hospital between January and July 2020. We collected a dataset of 6010 ECG samples from women preparing for natural spontaneous delivery (NSD). The ECG data was used to develop an ECG waveform-based Nociception Monitoring Index (NoM). The dataset was divided into training (80%) and validation (20%) sets. Multiple machine learning models, including LightGBM, XGBoost, SnapLogisticRegression, and SnapDecisionTree, were developed and evaluated. Hyperparameter optimization was performed using grid search and five-fold cross-validation to enhance model performance.</p><p><strong>Results: </strong>The LightGBM model demonstrated superior performance with an AUC of 0.96 and an accuracy of 90%, making it the optimal model for monitoring labor pain based on ECG data. Other models, such as XGBoost and SnapLogisticRegression, also showed strong performance, with AUC values ranging from 0.88 to 0.95.</p><p><strong>Conclusions: </strong>This study demonstrates that the integration of machine learning algorithms with ECG data significantly enhances the accuracy and reliability of labor pain monitoring. Specifically, the LightGBM model exhibits exceptional precision and robustness in continuous pain monitoring during labor, with potential applicability extending to broader healthcare settings.</p><p><strong>Trial registration: </strong>ClinicalTrials.gov Identifier: NCT04461704.</p>\",\"PeriodicalId\":48947,\"journal\":{\"name\":\"Biodata Mining\",\"volume\":\"17 1\",\"pages\":\"32\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11380346/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biodata Mining\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13040-024-00383-z\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodata Mining","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13040-024-00383-z","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Enhanced labor pain monitoring using machine learning and ECG waveform analysis for uterine contraction-induced pain.
Objectives: This study aims to develop an innovative approach for monitoring and assessing labor pain through ECG waveform analysis, utilizing machine learning techniques to monitor pain resulting from uterine contractions.
Methods: The study was conducted at National Taiwan University Hospital between January and July 2020. We collected a dataset of 6010 ECG samples from women preparing for natural spontaneous delivery (NSD). The ECG data was used to develop an ECG waveform-based Nociception Monitoring Index (NoM). The dataset was divided into training (80%) and validation (20%) sets. Multiple machine learning models, including LightGBM, XGBoost, SnapLogisticRegression, and SnapDecisionTree, were developed and evaluated. Hyperparameter optimization was performed using grid search and five-fold cross-validation to enhance model performance.
Results: The LightGBM model demonstrated superior performance with an AUC of 0.96 and an accuracy of 90%, making it the optimal model for monitoring labor pain based on ECG data. Other models, such as XGBoost and SnapLogisticRegression, also showed strong performance, with AUC values ranging from 0.88 to 0.95.
Conclusions: This study demonstrates that the integration of machine learning algorithms with ECG data significantly enhances the accuracy and reliability of labor pain monitoring. Specifically, the LightGBM model exhibits exceptional precision and robustness in continuous pain monitoring during labor, with potential applicability extending to broader healthcare settings.
期刊介绍:
BioData Mining is an open access, open peer-reviewed journal encompassing research on all aspects of data mining applied to high-dimensional biological and biomedical data, focusing on computational aspects of knowledge discovery from large-scale genetic, transcriptomic, genomic, proteomic, and metabolomic data.
Topical areas include, but are not limited to:
-Development, evaluation, and application of novel data mining and machine learning algorithms.
-Adaptation, evaluation, and application of traditional data mining and machine learning algorithms.
-Open-source software for the application of data mining and machine learning algorithms.
-Design, development and integration of databases, software and web services for the storage, management, retrieval, and analysis of data from large scale studies.
-Pre-processing, post-processing, modeling, and interpretation of data mining and machine learning results for biological interpretation and knowledge discovery.