利用机器学习和心电图波形分析对子宫收缩引起的疼痛加强分娩疼痛监测。

IF 4 3区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Yuan-Chia Chu, Saint Shiou-Sheng Chen, Kuen-Bao Chen, Jui-Sheng Sun, Tzu-Kuei Shen, Li-Kuei Chen
{"title":"利用机器学习和心电图波形分析对子宫收缩引起的疼痛加强分娩疼痛监测。","authors":"Yuan-Chia Chu, Saint Shiou-Sheng Chen, Kuen-Bao Chen, Jui-Sheng Sun, Tzu-Kuei Shen, Li-Kuei Chen","doi":"10.1186/s13040-024-00383-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>This study aims to develop an innovative approach for monitoring and assessing labor pain through ECG waveform analysis, utilizing machine learning techniques to monitor pain resulting from uterine contractions.</p><p><strong>Methods: </strong>The study was conducted at National Taiwan University Hospital between January and July 2020. We collected a dataset of 6010 ECG samples from women preparing for natural spontaneous delivery (NSD). The ECG data was used to develop an ECG waveform-based Nociception Monitoring Index (NoM). The dataset was divided into training (80%) and validation (20%) sets. Multiple machine learning models, including LightGBM, XGBoost, SnapLogisticRegression, and SnapDecisionTree, were developed and evaluated. Hyperparameter optimization was performed using grid search and five-fold cross-validation to enhance model performance.</p><p><strong>Results: </strong>The LightGBM model demonstrated superior performance with an AUC of 0.96 and an accuracy of 90%, making it the optimal model for monitoring labor pain based on ECG data. Other models, such as XGBoost and SnapLogisticRegression, also showed strong performance, with AUC values ranging from 0.88 to 0.95.</p><p><strong>Conclusions: </strong>This study demonstrates that the integration of machine learning algorithms with ECG data significantly enhances the accuracy and reliability of labor pain monitoring. Specifically, the LightGBM model exhibits exceptional precision and robustness in continuous pain monitoring during labor, with potential applicability extending to broader healthcare settings.</p><p><strong>Trial registration: </strong>ClinicalTrials.gov Identifier: NCT04461704.</p>","PeriodicalId":48947,"journal":{"name":"Biodata Mining","volume":"17 1","pages":"32"},"PeriodicalIF":4.0000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11380346/pdf/","citationCount":"0","resultStr":"{\"title\":\"Enhanced labor pain monitoring using machine learning and ECG waveform analysis for uterine contraction-induced pain.\",\"authors\":\"Yuan-Chia Chu, Saint Shiou-Sheng Chen, Kuen-Bao Chen, Jui-Sheng Sun, Tzu-Kuei Shen, Li-Kuei Chen\",\"doi\":\"10.1186/s13040-024-00383-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>This study aims to develop an innovative approach for monitoring and assessing labor pain through ECG waveform analysis, utilizing machine learning techniques to monitor pain resulting from uterine contractions.</p><p><strong>Methods: </strong>The study was conducted at National Taiwan University Hospital between January and July 2020. We collected a dataset of 6010 ECG samples from women preparing for natural spontaneous delivery (NSD). The ECG data was used to develop an ECG waveform-based Nociception Monitoring Index (NoM). The dataset was divided into training (80%) and validation (20%) sets. Multiple machine learning models, including LightGBM, XGBoost, SnapLogisticRegression, and SnapDecisionTree, were developed and evaluated. Hyperparameter optimization was performed using grid search and five-fold cross-validation to enhance model performance.</p><p><strong>Results: </strong>The LightGBM model demonstrated superior performance with an AUC of 0.96 and an accuracy of 90%, making it the optimal model for monitoring labor pain based on ECG data. Other models, such as XGBoost and SnapLogisticRegression, also showed strong performance, with AUC values ranging from 0.88 to 0.95.</p><p><strong>Conclusions: </strong>This study demonstrates that the integration of machine learning algorithms with ECG data significantly enhances the accuracy and reliability of labor pain monitoring. Specifically, the LightGBM model exhibits exceptional precision and robustness in continuous pain monitoring during labor, with potential applicability extending to broader healthcare settings.</p><p><strong>Trial registration: </strong>ClinicalTrials.gov Identifier: NCT04461704.</p>\",\"PeriodicalId\":48947,\"journal\":{\"name\":\"Biodata Mining\",\"volume\":\"17 1\",\"pages\":\"32\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11380346/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biodata Mining\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13040-024-00383-z\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodata Mining","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13040-024-00383-z","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:本研究旨在开发一种通过心电图波形分析监测和评估分娩疼痛的创新方法:本研究旨在开发一种通过心电图波形分析监测和评估分娩疼痛的创新方法,利用机器学习技术监测子宫收缩引起的疼痛:研究于 2020 年 1 月至 7 月在台湾大学医院进行。我们从准备自然自然分娩(NSD)的产妇中收集了 6010 份心电图样本数据集。心电图数据被用于开发基于心电图波形的痛觉监测指数(NoM)。数据集分为训练集(80%)和验证集(20%)。开发并评估了多种机器学习模型,包括 LightGBM、XGBoost、SnapLogisticRegression 和 SnapDecisionTree。使用网格搜索和五倍交叉验证对超参数进行了优化,以提高模型性能:结果:LightGBM 模型表现优异,AUC 为 0.96,准确率达 90%,是基于心电图数据监测分娩疼痛的最佳模型。其他模型,如 XGBoost 和 SnapLogisticRegression,也表现出很强的性能,AUC 值从 0.88 到 0.95 不等:本研究表明,将机器学习算法与心电图数据相结合可显著提高分娩疼痛监测的准确性和可靠性。具体来说,LightGBM 模型在分娩过程中的连续疼痛监测中表现出了卓越的精确性和鲁棒性,其潜在的适用性可扩展到更广泛的医疗保健环境中:试验注册:ClinicalTrials.gov Identifier:试验注册:ClinicalTrials.gov Identifier:NCT04461704。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced labor pain monitoring using machine learning and ECG waveform analysis for uterine contraction-induced pain.

Objectives: This study aims to develop an innovative approach for monitoring and assessing labor pain through ECG waveform analysis, utilizing machine learning techniques to monitor pain resulting from uterine contractions.

Methods: The study was conducted at National Taiwan University Hospital between January and July 2020. We collected a dataset of 6010 ECG samples from women preparing for natural spontaneous delivery (NSD). The ECG data was used to develop an ECG waveform-based Nociception Monitoring Index (NoM). The dataset was divided into training (80%) and validation (20%) sets. Multiple machine learning models, including LightGBM, XGBoost, SnapLogisticRegression, and SnapDecisionTree, were developed and evaluated. Hyperparameter optimization was performed using grid search and five-fold cross-validation to enhance model performance.

Results: The LightGBM model demonstrated superior performance with an AUC of 0.96 and an accuracy of 90%, making it the optimal model for monitoring labor pain based on ECG data. Other models, such as XGBoost and SnapLogisticRegression, also showed strong performance, with AUC values ranging from 0.88 to 0.95.

Conclusions: This study demonstrates that the integration of machine learning algorithms with ECG data significantly enhances the accuracy and reliability of labor pain monitoring. Specifically, the LightGBM model exhibits exceptional precision and robustness in continuous pain monitoring during labor, with potential applicability extending to broader healthcare settings.

Trial registration: ClinicalTrials.gov Identifier: NCT04461704.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biodata Mining
Biodata Mining MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
7.90
自引率
0.00%
发文量
28
审稿时长
23 weeks
期刊介绍: BioData Mining is an open access, open peer-reviewed journal encompassing research on all aspects of data mining applied to high-dimensional biological and biomedical data, focusing on computational aspects of knowledge discovery from large-scale genetic, transcriptomic, genomic, proteomic, and metabolomic data. Topical areas include, but are not limited to: -Development, evaluation, and application of novel data mining and machine learning algorithms. -Adaptation, evaluation, and application of traditional data mining and machine learning algorithms. -Open-source software for the application of data mining and machine learning algorithms. -Design, development and integration of databases, software and web services for the storage, management, retrieval, and analysis of data from large scale studies. -Pre-processing, post-processing, modeling, and interpretation of data mining and machine learning results for biological interpretation and knowledge discovery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信