{"title":"双速率致动刚性航天器系统上空间望远镜的事件触发提升鲁棒 MPC 稳定控制","authors":"","doi":"10.1016/j.ast.2024.109553","DOIUrl":null,"url":null,"abstract":"<div><p>This study addresses the pose stabilization control problem for enhancing a space telescope mounted on a spacecraft system under a dual-rate actuated setup. An input-lifting approach is utilized to manage the dual rates in the control components, specifically the orbital space telescope and its loading platform. To counteract external spatial perturbations and spacecraft system uncertainties, an integrated control scheme is proposed, combining real-time model parameter estimation, active compensation control, and event-triggered lifted robust model predictive control (ET-LRMPC). The event-triggered mechanism in the proposed algorithm minimizes computational resource consumption while maintaining effective spacecraft control. Numerical simulations demonstrate that the proposed control scheme achieves favorable results under persistent external perturbations and model uncertainties. In terms of the overshoot, the algorithm proposed reduces the control effect by up to 87.1% in the spatial displacement of the payload and 98.6% in the Euler attitude angle compared to the conventional control algorithm. For the control of the base, the amount of overshoots with respect to the conventional control in spatial displacement and Euler attitude angle is reduced by 49% and 97.1%.</p></div>","PeriodicalId":50955,"journal":{"name":"Aerospace Science and Technology","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Event-triggered lifted robust MPC stabilization control for space telescope on dual-rate actuated rigid spacecraft systems\",\"authors\":\"\",\"doi\":\"10.1016/j.ast.2024.109553\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study addresses the pose stabilization control problem for enhancing a space telescope mounted on a spacecraft system under a dual-rate actuated setup. An input-lifting approach is utilized to manage the dual rates in the control components, specifically the orbital space telescope and its loading platform. To counteract external spatial perturbations and spacecraft system uncertainties, an integrated control scheme is proposed, combining real-time model parameter estimation, active compensation control, and event-triggered lifted robust model predictive control (ET-LRMPC). The event-triggered mechanism in the proposed algorithm minimizes computational resource consumption while maintaining effective spacecraft control. Numerical simulations demonstrate that the proposed control scheme achieves favorable results under persistent external perturbations and model uncertainties. In terms of the overshoot, the algorithm proposed reduces the control effect by up to 87.1% in the spatial displacement of the payload and 98.6% in the Euler attitude angle compared to the conventional control algorithm. For the control of the base, the amount of overshoots with respect to the conventional control in spatial displacement and Euler attitude angle is reduced by 49% and 97.1%.</p></div>\",\"PeriodicalId\":50955,\"journal\":{\"name\":\"Aerospace Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerospace Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1270963824006837\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1270963824006837","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Event-triggered lifted robust MPC stabilization control for space telescope on dual-rate actuated rigid spacecraft systems
This study addresses the pose stabilization control problem for enhancing a space telescope mounted on a spacecraft system under a dual-rate actuated setup. An input-lifting approach is utilized to manage the dual rates in the control components, specifically the orbital space telescope and its loading platform. To counteract external spatial perturbations and spacecraft system uncertainties, an integrated control scheme is proposed, combining real-time model parameter estimation, active compensation control, and event-triggered lifted robust model predictive control (ET-LRMPC). The event-triggered mechanism in the proposed algorithm minimizes computational resource consumption while maintaining effective spacecraft control. Numerical simulations demonstrate that the proposed control scheme achieves favorable results under persistent external perturbations and model uncertainties. In terms of the overshoot, the algorithm proposed reduces the control effect by up to 87.1% in the spatial displacement of the payload and 98.6% in the Euler attitude angle compared to the conventional control algorithm. For the control of the base, the amount of overshoots with respect to the conventional control in spatial displacement and Euler attitude angle is reduced by 49% and 97.1%.
期刊介绍:
Aerospace Science and Technology publishes articles of outstanding scientific quality. Each article is reviewed by two referees. The journal welcomes papers from a wide range of countries. This journal publishes original papers, review articles and short communications related to all fields of aerospace research, fundamental and applied, potential applications of which are clearly related to:
• The design and the manufacture of aircraft, helicopters, missiles, launchers and satellites
• The control of their environment
• The study of various systems they are involved in, as supports or as targets.
Authors are invited to submit papers on new advances in the following topics to aerospace applications:
• Fluid dynamics
• Energetics and propulsion
• Materials and structures
• Flight mechanics
• Navigation, guidance and control
• Acoustics
• Optics
• Electromagnetism and radar
• Signal and image processing
• Information processing
• Data fusion
• Decision aid
• Human behaviour
• Robotics and intelligent systems
• Complex system engineering.
Etc.