Seunghoan Song, François Le Gall, Masahito Hayashi
{"title":"先验纠缠可指数级提高量子信息的单服务器量子私人信息检索能力","authors":"Seunghoan Song, François Le Gall, Masahito Hayashi","doi":"10.1140/epjqt/s40507-024-00266-6","DOIUrl":null,"url":null,"abstract":"<div><p>Quantum private information retrieval (QPIR) for quantum messages is a quantum communication task, in which a user retrieves one of the multiple quantum states from the server without revealing which state is retrieved. In the one-server setting, we find an exponential gap in the communication complexities between the presence and absence of prior entanglement in this problem with the one-server setting. To achieve this aim, as the first step, we prove that the trivial solution of downloading all messages is optimal under QPIR for quantum messages, which is a similar result to that of classical PIR but different from QPIR for classical messages. As the second step, we propose an efficient one-server one-round QPIR protocol with prior entanglement by constructing a reduction from a QPIR protocol for classical messages to a QPIR protocol for quantum messages in the presence of prior entanglement.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"11 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00266-6","citationCount":"0","resultStr":"{\"title\":\"Prior entanglement exponentially improves one-server quantum private information retrieval for quantum messages\",\"authors\":\"Seunghoan Song, François Le Gall, Masahito Hayashi\",\"doi\":\"10.1140/epjqt/s40507-024-00266-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Quantum private information retrieval (QPIR) for quantum messages is a quantum communication task, in which a user retrieves one of the multiple quantum states from the server without revealing which state is retrieved. In the one-server setting, we find an exponential gap in the communication complexities between the presence and absence of prior entanglement in this problem with the one-server setting. To achieve this aim, as the first step, we prove that the trivial solution of downloading all messages is optimal under QPIR for quantum messages, which is a similar result to that of classical PIR but different from QPIR for classical messages. As the second step, we propose an efficient one-server one-round QPIR protocol with prior entanglement by constructing a reduction from a QPIR protocol for classical messages to a QPIR protocol for quantum messages in the presence of prior entanglement.</p></div>\",\"PeriodicalId\":547,\"journal\":{\"name\":\"EPJ Quantum Technology\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00266-6\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPJ Quantum Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjqt/s40507-024-00266-6\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-024-00266-6","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Prior entanglement exponentially improves one-server quantum private information retrieval for quantum messages
Quantum private information retrieval (QPIR) for quantum messages is a quantum communication task, in which a user retrieves one of the multiple quantum states from the server without revealing which state is retrieved. In the one-server setting, we find an exponential gap in the communication complexities between the presence and absence of prior entanglement in this problem with the one-server setting. To achieve this aim, as the first step, we prove that the trivial solution of downloading all messages is optimal under QPIR for quantum messages, which is a similar result to that of classical PIR but different from QPIR for classical messages. As the second step, we propose an efficient one-server one-round QPIR protocol with prior entanglement by constructing a reduction from a QPIR protocol for classical messages to a QPIR protocol for quantum messages in the presence of prior entanglement.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following:
Quantum measurement, metrology and lithography
Quantum complex systems, networks and cellular automata
Quantum electromechanical systems
Quantum optomechanical systems
Quantum machines, engineering and nanorobotics
Quantum control theory
Quantum information, communication and computation
Quantum thermodynamics
Quantum metamaterials
The effect of Casimir forces on micro- and nano-electromechanical systems
Quantum biology
Quantum sensing
Hybrid quantum systems
Quantum simulations.