预处理阶段对使用 YOLO 的离线自动车辆计数性能的影响

IF 1.3 4区 工程技术 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Daniel Valencia;Elena Muñoz España;Mariela Muñoz Añasco
{"title":"预处理阶段对使用 YOLO 的离线自动车辆计数性能的影响","authors":"Daniel Valencia;Elena Muñoz España;Mariela Muñoz Añasco","doi":"10.1109/TLA.2024.10669248","DOIUrl":null,"url":null,"abstract":"Vehicle counting systems detect, classify, and count vehicles with sensors or image processing, providing valuable information for road management. Image processing systems provide detailed information on vehicle flow with adequate lighting conditions and a higher computational cost compared to sensor systems. The image processing systems with higher accuracy require higher computational cost. This feature limits the number of application cases in cities with low technology level. This research analyzes urban vehicle counting using an automatic image processing system using YOLOv5 in the vehicle detection-classification stage and the SORT algorithm in the tracking stage. The study used videos recorded from a pedestrian bridge in Popayan, Colombia, for an exploratory study of the influence of preprocessing operations on the performance of a low-tech vehicle counting system. The study performed a comparative statistical analysis to determine the impact of different settings on system performance. An ANOVA analysis evaluates the incidence of frame cut and reshape on YOLO processing. The results indicate that a 30% cut of the image area prior to YOLO processing produces the lowest weighted average error. In addition, the frame reshape only increases the processing time. The study proposes improvements in the performance of an offline automatic vehicle counting system from the video preprocessing stage.","PeriodicalId":55024,"journal":{"name":"IEEE Latin America Transactions","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10669248","citationCount":"0","resultStr":"{\"title\":\"Impact of the preprocessing stage on the performance of offline automatic vehicle counting using YOLO\",\"authors\":\"Daniel Valencia;Elena Muñoz España;Mariela Muñoz Añasco\",\"doi\":\"10.1109/TLA.2024.10669248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vehicle counting systems detect, classify, and count vehicles with sensors or image processing, providing valuable information for road management. Image processing systems provide detailed information on vehicle flow with adequate lighting conditions and a higher computational cost compared to sensor systems. The image processing systems with higher accuracy require higher computational cost. This feature limits the number of application cases in cities with low technology level. This research analyzes urban vehicle counting using an automatic image processing system using YOLOv5 in the vehicle detection-classification stage and the SORT algorithm in the tracking stage. The study used videos recorded from a pedestrian bridge in Popayan, Colombia, for an exploratory study of the influence of preprocessing operations on the performance of a low-tech vehicle counting system. The study performed a comparative statistical analysis to determine the impact of different settings on system performance. An ANOVA analysis evaluates the incidence of frame cut and reshape on YOLO processing. The results indicate that a 30% cut of the image area prior to YOLO processing produces the lowest weighted average error. In addition, the frame reshape only increases the processing time. The study proposes improvements in the performance of an offline automatic vehicle counting system from the video preprocessing stage.\",\"PeriodicalId\":55024,\"journal\":{\"name\":\"IEEE Latin America Transactions\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10669248\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Latin America Transactions\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10669248/\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Latin America Transactions","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10669248/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

车辆计数系统通过传感器或图像处理对车辆进行检测、分类和计数,为道路管理提供有价值的信息。与传感器系统相比,图像处理系统能在充足的照明条件下提供详细的车辆流量信息,但计算成本较高。精度更高的图像处理系统需要更高的计算成本。这一特点限制了技术水平较低的城市的应用案例数量。本研究使用自动图像处理系统,在车辆检测分类阶段使用 YOLOv5,在跟踪阶段使用 SORT 算法,对城市车辆计数进行分析。研究使用了哥伦比亚波帕扬一座人行天桥上录制的视频,对预处理操作对低技术水平车辆计数系统性能的影响进行了探索性研究。研究进行了比较统计分析,以确定不同设置对系统性能的影响。方差分析评估了框架切割和重塑对 YOLO 处理的影响。结果表明,在进行 YOLO 处理之前对图像区域进行 30% 的剪切所产生的加权平均误差最小。此外,帧重塑只会增加处理时间。这项研究提出了从视频预处理阶段改进离线车辆自动计数系统性能的建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of the preprocessing stage on the performance of offline automatic vehicle counting using YOLO
Vehicle counting systems detect, classify, and count vehicles with sensors or image processing, providing valuable information for road management. Image processing systems provide detailed information on vehicle flow with adequate lighting conditions and a higher computational cost compared to sensor systems. The image processing systems with higher accuracy require higher computational cost. This feature limits the number of application cases in cities with low technology level. This research analyzes urban vehicle counting using an automatic image processing system using YOLOv5 in the vehicle detection-classification stage and the SORT algorithm in the tracking stage. The study used videos recorded from a pedestrian bridge in Popayan, Colombia, for an exploratory study of the influence of preprocessing operations on the performance of a low-tech vehicle counting system. The study performed a comparative statistical analysis to determine the impact of different settings on system performance. An ANOVA analysis evaluates the incidence of frame cut and reshape on YOLO processing. The results indicate that a 30% cut of the image area prior to YOLO processing produces the lowest weighted average error. In addition, the frame reshape only increases the processing time. The study proposes improvements in the performance of an offline automatic vehicle counting system from the video preprocessing stage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Latin America Transactions
IEEE Latin America Transactions COMPUTER SCIENCE, INFORMATION SYSTEMS-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
3.50
自引率
7.70%
发文量
192
审稿时长
3-8 weeks
期刊介绍: IEEE Latin America Transactions (IEEE LATAM) is an interdisciplinary journal focused on the dissemination of original and quality research papers / review articles in Spanish and Portuguese of emerging topics in three main areas: Computing, Electric Energy and Electronics. Some of the sub-areas of the journal are, but not limited to: Automatic control, communications, instrumentation, artificial intelligence, power and industrial electronics, fault diagnosis and detection, transportation electrification, internet of things, electrical machines, circuits and systems, biomedicine and biomedical / haptic applications, secure communications, robotics, sensors and actuators, computer networks, smart grids, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信