遗传背景会影响家鼠交叉干扰的强度。

IF 3.3 3区 生物学 Q2 GENETICS & HEREDITY
Genetics Pub Date : 2024-11-06 DOI:10.1093/genetics/iyae146
Andrew P Morgan, Bret A Payseur
{"title":"遗传背景会影响家鼠交叉干扰的强度。","authors":"Andrew P Morgan, Bret A Payseur","doi":"10.1093/genetics/iyae146","DOIUrl":null,"url":null,"abstract":"<p><p>Meiotic recombination is required for faithful chromosome segregation in most sexually reproducing organisms and shapes the distribution of genetic variation in populations. Both the overall rate and the spatial distribution of crossovers vary within and between species. Adjacent crossovers on the same chromosome tend to be spaced more evenly than expected at random, a phenomenon known as crossover interference. Although interference has been observed in many taxa, the factors that influence the strength of interference are not well understood. We used house mice (Mus musculus), a well-established model system for understanding recombination, to study the effects of genetics and age on recombination rate and interference in the male germline. We analyzed crossover positions in 503 progeny from reciprocal F1 hybrids between inbred strains representing the three major subspecies of house mice. Consistent with previous studies, autosomal alleles from M. m. musculus tend to increase recombination rate, while inheriting a M. m. musculus X chromosome decreases recombination rate. Old males transmit an average of 0.6 more crossovers per meiosis (5.0%) than young males, though the effect varies across genetic backgrounds. We show that the strength of crossover interference depends on genotype, providing a rare demonstration that interference evolves over short timescales. Differences between reciprocal F1s suggest that X-linked factors modulate the strength of interference. Our findings motivate additional comparisons of interference among recently diverged species and further examination of the role of paternal age in determining the number and positioning of crossovers.</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11538424/pdf/","citationCount":"0","resultStr":"{\"title\":\"Genetic background affects the strength of crossover interference in house mice.\",\"authors\":\"Andrew P Morgan, Bret A Payseur\",\"doi\":\"10.1093/genetics/iyae146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Meiotic recombination is required for faithful chromosome segregation in most sexually reproducing organisms and shapes the distribution of genetic variation in populations. Both the overall rate and the spatial distribution of crossovers vary within and between species. Adjacent crossovers on the same chromosome tend to be spaced more evenly than expected at random, a phenomenon known as crossover interference. Although interference has been observed in many taxa, the factors that influence the strength of interference are not well understood. We used house mice (Mus musculus), a well-established model system for understanding recombination, to study the effects of genetics and age on recombination rate and interference in the male germline. We analyzed crossover positions in 503 progeny from reciprocal F1 hybrids between inbred strains representing the three major subspecies of house mice. Consistent with previous studies, autosomal alleles from M. m. musculus tend to increase recombination rate, while inheriting a M. m. musculus X chromosome decreases recombination rate. Old males transmit an average of 0.6 more crossovers per meiosis (5.0%) than young males, though the effect varies across genetic backgrounds. We show that the strength of crossover interference depends on genotype, providing a rare demonstration that interference evolves over short timescales. Differences between reciprocal F1s suggest that X-linked factors modulate the strength of interference. Our findings motivate additional comparisons of interference among recently diverged species and further examination of the role of paternal age in determining the number and positioning of crossovers.</p>\",\"PeriodicalId\":48925,\"journal\":{\"name\":\"Genetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11538424/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/genetics/iyae146\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/genetics/iyae146","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

在大多数有性生殖的生物中,减数分裂重组是染色体忠实分离的必要条件,并决定了种群中遗传变异的分布。在物种内部和物种之间,交叉的总体比率和空间分布都各不相同。同一染色体上相邻交叉点的间隔往往比预期的要均匀,这种现象被称为交叉干扰。虽然在许多类群中都观察到了干扰现象,但对影响干扰强度的因素却不甚了解。我们利用家鼠(Mus musculus)这一了解重组的成熟模型系统,研究了遗传和年龄对雄性生殖系重组率和干扰的影响。我们分析了代表三个主要家鼠亚种的近交系互交 F1 杂交产生的 503 个后代的交叉位置。与之前的研究一致,来自家鼠的常染色体等位基因往往会增加重组率,而遗传家鼠X染色体则会降低重组率。与年轻雄性相比,老年雄性在每次减数分裂中平均多传递 0.6 个交叉基因(5.0%),但这一效应在不同的遗传背景下有所不同。我们的研究表明,交叉干扰的强度取决于基因型,这罕见地证明了干扰会在短时间内演变。互交 F1 之间的差异表明,X 连锁因素会调节干扰的强度。我们的发现促使我们对最近分化的物种之间的干扰进行更多的比较,并进一步研究父系年龄在决定交叉的数量和定位方面的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Genetic background affects the strength of crossover interference in house mice.

Meiotic recombination is required for faithful chromosome segregation in most sexually reproducing organisms and shapes the distribution of genetic variation in populations. Both the overall rate and the spatial distribution of crossovers vary within and between species. Adjacent crossovers on the same chromosome tend to be spaced more evenly than expected at random, a phenomenon known as crossover interference. Although interference has been observed in many taxa, the factors that influence the strength of interference are not well understood. We used house mice (Mus musculus), a well-established model system for understanding recombination, to study the effects of genetics and age on recombination rate and interference in the male germline. We analyzed crossover positions in 503 progeny from reciprocal F1 hybrids between inbred strains representing the three major subspecies of house mice. Consistent with previous studies, autosomal alleles from M. m. musculus tend to increase recombination rate, while inheriting a M. m. musculus X chromosome decreases recombination rate. Old males transmit an average of 0.6 more crossovers per meiosis (5.0%) than young males, though the effect varies across genetic backgrounds. We show that the strength of crossover interference depends on genotype, providing a rare demonstration that interference evolves over short timescales. Differences between reciprocal F1s suggest that X-linked factors modulate the strength of interference. Our findings motivate additional comparisons of interference among recently diverged species and further examination of the role of paternal age in determining the number and positioning of crossovers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genetics
Genetics GENETICS & HEREDITY-
CiteScore
6.90
自引率
6.10%
发文量
177
审稿时长
1.5 months
期刊介绍: GENETICS is published by the Genetics Society of America, a scholarly society that seeks to deepen our understanding of the living world by advancing our understanding of genetics. Since 1916, GENETICS has published high-quality, original research presenting novel findings bearing on genetics and genomics. The journal publishes empirical studies of organisms ranging from microbes to humans, as well as theoretical work. While it has an illustrious history, GENETICS has changed along with the communities it serves: it is not your mentor''s journal. The editors make decisions quickly – in around 30 days – without sacrificing the excellence and scholarship for which the journal has long been known. GENETICS is a peer reviewed, peer-edited journal, with an international reach and increasing visibility and impact. All editorial decisions are made through collaboration of at least two editors who are practicing scientists. GENETICS is constantly innovating: expanded types of content include Reviews, Commentary (current issues of interest to geneticists), Perspectives (historical), Primers (to introduce primary literature into the classroom), Toolbox Reviews, plus YeastBook, FlyBook, and WormBook (coming spring 2016). For particularly time-sensitive results, we publish Communications. As part of our mission to serve our communities, we''ve published thematic collections, including Genomic Selection, Multiparental Populations, Mouse Collaborative Cross, and the Genetics of Sex.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信