{"title":"细菌基因组功能注释互动工具。","authors":"Morgan N Price, Adam P Arkin","doi":"10.1093/database/baae089","DOIUrl":null,"url":null,"abstract":"<p><p>Automated annotations of protein functions are error-prone because of our lack of knowledge of protein functions. For example, it is often impossible to predict the correct substrate for an enzyme or a transporter. Furthermore, much of the knowledge that we do have about the functions of proteins is missing from the underlying databases. We discuss how to use interactive tools to quickly find different kinds of information relevant to a protein's function. Many of these tools are available via PaperBLAST (http://papers.genomics.lbl.gov). Combining these tools often allows us to infer a protein's function. Ideally, accurate annotations would allow us to predict a bacterium's capabilities from its genome sequence, but in practice, this remains challenging. We describe interactive tools that infer potential capabilities from a genome sequence or that search a genome to find proteins that might perform a specific function of interest. Database URL: http://papers.genomics.lbl.gov.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11378808/pdf/","citationCount":"0","resultStr":"{\"title\":\"Interactive tools for functional annotation of bacterial genomes.\",\"authors\":\"Morgan N Price, Adam P Arkin\",\"doi\":\"10.1093/database/baae089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Automated annotations of protein functions are error-prone because of our lack of knowledge of protein functions. For example, it is often impossible to predict the correct substrate for an enzyme or a transporter. Furthermore, much of the knowledge that we do have about the functions of proteins is missing from the underlying databases. We discuss how to use interactive tools to quickly find different kinds of information relevant to a protein's function. Many of these tools are available via PaperBLAST (http://papers.genomics.lbl.gov). Combining these tools often allows us to infer a protein's function. Ideally, accurate annotations would allow us to predict a bacterium's capabilities from its genome sequence, but in practice, this remains challenging. We describe interactive tools that infer potential capabilities from a genome sequence or that search a genome to find proteins that might perform a specific function of interest. Database URL: http://papers.genomics.lbl.gov.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11378808/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/database/baae089\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/database/baae089","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Interactive tools for functional annotation of bacterial genomes.
Automated annotations of protein functions are error-prone because of our lack of knowledge of protein functions. For example, it is often impossible to predict the correct substrate for an enzyme or a transporter. Furthermore, much of the knowledge that we do have about the functions of proteins is missing from the underlying databases. We discuss how to use interactive tools to quickly find different kinds of information relevant to a protein's function. Many of these tools are available via PaperBLAST (http://papers.genomics.lbl.gov). Combining these tools often allows us to infer a protein's function. Ideally, accurate annotations would allow us to predict a bacterium's capabilities from its genome sequence, but in practice, this remains challenging. We describe interactive tools that infer potential capabilities from a genome sequence or that search a genome to find proteins that might perform a specific function of interest. Database URL: http://papers.genomics.lbl.gov.