量子伊辛链上的禁闭和扭结纠缠不对称

IF 5.1 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Quantum Pub Date : 2024-09-06 DOI:10.22331/q-2024-09-06-1462
Brian J. J. Khor, D. M. Kürkçüoglu, T. J. Hobbs, G. N. Perdue, Israel Klich
{"title":"量子伊辛链上的禁闭和扭结纠缠不对称","authors":"Brian J. J. Khor, D. M. Kürkçüoglu, T. J. Hobbs, G. N. Perdue, Israel Klich","doi":"10.22331/q-2024-09-06-1462","DOIUrl":null,"url":null,"abstract":"In this work, we explore the interplay of confinement, string breaking and entanglement asymmetry on a 1D quantum Ising chain. We consider the evolution of an initial domain wall and show that, surprisingly, while the introduction of confinement through a longitudinal field typically suppresses entanglement, it can also serve to increase it beyond a bound set for free particles. Our model can be tuned to conserve the number of domain walls, which gives an opportunity to explore entanglement asymmetry associated with link variables. We study two approaches to deal with the non-locality of the link variables, either directly or following a Kramers-Wannier transformation that maps bond variables (kinks) to site variables (spins). We develop a numerical procedure for computing the asymmetry using tensor network methods and use it to demonstrate the different types of entanglement and entanglement asymmetry.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"7 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Confinement and Kink Entanglement Asymmetry on a Quantum Ising Chain\",\"authors\":\"Brian J. J. Khor, D. M. Kürkçüoglu, T. J. Hobbs, G. N. Perdue, Israel Klich\",\"doi\":\"10.22331/q-2024-09-06-1462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we explore the interplay of confinement, string breaking and entanglement asymmetry on a 1D quantum Ising chain. We consider the evolution of an initial domain wall and show that, surprisingly, while the introduction of confinement through a longitudinal field typically suppresses entanglement, it can also serve to increase it beyond a bound set for free particles. Our model can be tuned to conserve the number of domain walls, which gives an opportunity to explore entanglement asymmetry associated with link variables. We study two approaches to deal with the non-locality of the link variables, either directly or following a Kramers-Wannier transformation that maps bond variables (kinks) to site variables (spins). We develop a numerical procedure for computing the asymmetry using tensor network methods and use it to demonstrate the different types of entanglement and entanglement asymmetry.\",\"PeriodicalId\":20807,\"journal\":{\"name\":\"Quantum\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.22331/q-2024-09-06-1462\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2024-09-06-1462","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们探索了一维量子伊辛链上的约束、弦断裂和纠缠不对称的相互作用。我们考虑了初始畴壁的演化,结果表明,令人惊讶的是,虽然通过纵向场引入束缚通常会抑制纠缠,但它也能起到增加纠缠的作用,使其超出自由粒子的边界。我们的模型可以进行调整,以保留畴壁的数量,这就为探索与链接变量相关的纠缠不对称性提供了机会。我们研究了两种处理链路变量非位置性的方法,一种是直接处理,另一种是通过克拉默-万尼尔变换将键变量(扭结)映射到位点变量(自旋)。我们开发了一种使用张量网络方法计算不对称的数值程序,并用它来演示不同类型的纠缠和纠缠不对称。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Confinement and Kink Entanglement Asymmetry on a Quantum Ising Chain
In this work, we explore the interplay of confinement, string breaking and entanglement asymmetry on a 1D quantum Ising chain. We consider the evolution of an initial domain wall and show that, surprisingly, while the introduction of confinement through a longitudinal field typically suppresses entanglement, it can also serve to increase it beyond a bound set for free particles. Our model can be tuned to conserve the number of domain walls, which gives an opportunity to explore entanglement asymmetry associated with link variables. We study two approaches to deal with the non-locality of the link variables, either directly or following a Kramers-Wannier transformation that maps bond variables (kinks) to site variables (spins). We develop a numerical procedure for computing the asymmetry using tensor network methods and use it to demonstrate the different types of entanglement and entanglement asymmetry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantum
Quantum Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍: Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信