过渡金属二卤化物高对称性同硅层的电子能带结构

IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy
Heng Zhang, Wen Xu, Yiming Xiao, Francois M. Peeters, Milorad V. Milošević
{"title":"过渡金属二卤化物高对称性同硅层的电子能带结构","authors":"Heng Zhang, Wen Xu, Yiming Xiao, Francois M. Peeters, Milorad V. Milošević","doi":"10.1103/physrevb.110.115410","DOIUrl":null,"url":null,"abstract":"High-symmetric homobilayer transition metal dichalcogenides (TMDs) are important members of the bilayer (BL) van der Waals material family. Here we present a systematic study of the electronic band structure in low-energy regime in homo-BL TMD structures by using the standard <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>k</mi><mo>·</mo><mi>p</mi></mrow></math> method. Six types of BL TMD stacking configurations, which satisfy the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>C</mi><mn>3</mn></msub></math> symmetry are considered and they are <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup><mi mathvariant=\"normal\">H</mi><mi mathvariant=\"normal\">M</mi><mi mathvariant=\"normal\">M</mi></msubsup><mo>,</mo><mo> </mo><msubsup><mi mathvariant=\"normal\">H</mi><mi mathvariant=\"normal\">X</mi><mi mathvariant=\"normal\">M</mi></msubsup><mo>,</mo><mo> </mo><msubsup><mi mathvariant=\"normal\">H</mi><mi mathvariant=\"normal\">X</mi><mi mathvariant=\"normal\">X</mi></msubsup><mo>,</mo><mo> </mo><msubsup><mi mathvariant=\"normal\">R</mi><mi mathvariant=\"normal\">M</mi><mi mathvariant=\"normal\">M</mi></msubsup><mo>,</mo><mo> </mo><msubsup><mi mathvariant=\"normal\">R</mi><mi mathvariant=\"normal\">X</mi><mi mathvariant=\"normal\">M</mi></msubsup></math>, and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup><mi mathvariant=\"normal\">R</mi><mi mathvariant=\"normal\">M</mi><mi mathvariant=\"normal\">X</mi></msubsup></math>. The intrinsic spin-orbit coupling (SOC) in the conduction and valence bands and the phase of interlayer hopping matrix elements are included in our investigation. Taking BL <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>MoS</mi><mn>2</mn></msub></math> as an example, we examine the electronic energy spectra, the electron density of states, and the Fermi energies in these BL structures. We find that the electron energy dispersions in high-symmetric BL TMDs are not parabolic-like, where the band parameters (such as the energy gap, the effective electron band mass and the fourth-order correction coefficient in different subbands) depend markedly on the stacking configurations. Interestingly, the spin splitting in <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"normal\">H</mi></math>-stacked BL TMDs is suppressed because of center-inversion symmetry and time-reversal symmetry. Importantly, the phase of the interlayer hopping matrix element affects significantly the electronic properties of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup><mi mathvariant=\"normal\">H</mi><mi mathvariant=\"normal\">X</mi><mi mathvariant=\"normal\">X</mi></msubsup></math> and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup><mi mathvariant=\"normal\">R</mi><mi mathvariant=\"normal\">M</mi><mi mathvariant=\"normal\">M</mi></msubsup></math> stacked BL TMDs. The methodology and the results presented in this study can foster further exploration of the basic physical properties of BL TMDs for potential applications in electronics and optoelectronics.","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electronic band structure of high-symmetry homobilayers of transition metal dichalcogenides\",\"authors\":\"Heng Zhang, Wen Xu, Yiming Xiao, Francois M. Peeters, Milorad V. Milošević\",\"doi\":\"10.1103/physrevb.110.115410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-symmetric homobilayer transition metal dichalcogenides (TMDs) are important members of the bilayer (BL) van der Waals material family. Here we present a systematic study of the electronic band structure in low-energy regime in homo-BL TMD structures by using the standard <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>k</mi><mo>·</mo><mi>p</mi></mrow></math> method. Six types of BL TMD stacking configurations, which satisfy the <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>C</mi><mn>3</mn></msub></math> symmetry are considered and they are <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msubsup><mi mathvariant=\\\"normal\\\">H</mi><mi mathvariant=\\\"normal\\\">M</mi><mi mathvariant=\\\"normal\\\">M</mi></msubsup><mo>,</mo><mo> </mo><msubsup><mi mathvariant=\\\"normal\\\">H</mi><mi mathvariant=\\\"normal\\\">X</mi><mi mathvariant=\\\"normal\\\">M</mi></msubsup><mo>,</mo><mo> </mo><msubsup><mi mathvariant=\\\"normal\\\">H</mi><mi mathvariant=\\\"normal\\\">X</mi><mi mathvariant=\\\"normal\\\">X</mi></msubsup><mo>,</mo><mo> </mo><msubsup><mi mathvariant=\\\"normal\\\">R</mi><mi mathvariant=\\\"normal\\\">M</mi><mi mathvariant=\\\"normal\\\">M</mi></msubsup><mo>,</mo><mo> </mo><msubsup><mi mathvariant=\\\"normal\\\">R</mi><mi mathvariant=\\\"normal\\\">X</mi><mi mathvariant=\\\"normal\\\">M</mi></msubsup></math>, and <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msubsup><mi mathvariant=\\\"normal\\\">R</mi><mi mathvariant=\\\"normal\\\">M</mi><mi mathvariant=\\\"normal\\\">X</mi></msubsup></math>. The intrinsic spin-orbit coupling (SOC) in the conduction and valence bands and the phase of interlayer hopping matrix elements are included in our investigation. Taking BL <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>MoS</mi><mn>2</mn></msub></math> as an example, we examine the electronic energy spectra, the electron density of states, and the Fermi energies in these BL structures. We find that the electron energy dispersions in high-symmetric BL TMDs are not parabolic-like, where the band parameters (such as the energy gap, the effective electron band mass and the fourth-order correction coefficient in different subbands) depend markedly on the stacking configurations. Interestingly, the spin splitting in <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi mathvariant=\\\"normal\\\">H</mi></math>-stacked BL TMDs is suppressed because of center-inversion symmetry and time-reversal symmetry. Importantly, the phase of the interlayer hopping matrix element affects significantly the electronic properties of <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msubsup><mi mathvariant=\\\"normal\\\">H</mi><mi mathvariant=\\\"normal\\\">X</mi><mi mathvariant=\\\"normal\\\">X</mi></msubsup></math> and <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msubsup><mi mathvariant=\\\"normal\\\">R</mi><mi mathvariant=\\\"normal\\\">M</mi><mi mathvariant=\\\"normal\\\">M</mi></msubsup></math> stacked BL TMDs. The methodology and the results presented in this study can foster further exploration of the basic physical properties of BL TMDs for potential applications in electronics and optoelectronics.\",\"PeriodicalId\":20082,\"journal\":{\"name\":\"Physical Review B\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevb.110.115410\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.110.115410","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

高对称性同双层过渡金属二钙化物(TMD)是双层范德华材料家族的重要成员。在此,我们采用标准 k-p 方法,对同双层过渡金属二钙化物结构的低能态电子能带结构进行了系统研究。我们考虑了六种满足 C3 对称性的 BL TMD 堆叠构型,它们分别是 HMM、HXM、HXX、RMM、RXM 和 RMX。我们的研究还包括导带和价带的本征自旋轨道耦合(SOC)以及层间跳跃矩阵元素的相位。以 BL MoS2 为例,我们研究了这些 BL 结构的电子能谱、电子态密度和费米能。我们发现,高对称 BL TMD 中的电子能量色散并非抛物线状,其带参数(如能隙、有效电子带质量和不同子带的四阶校正系数)明显取决于堆叠构型。有趣的是,由于中心反转对称性和时间反转对称性,H 叠层 BL TMD 中的自旋分裂受到了抑制。重要的是,层间跳变矩阵元素的相位对 HXX 和 RMM 堆叠 BL TMD 的电子特性有很大影响。本研究提出的方法和结果有助于进一步探索 BL TMD 的基本物理性质,从而促进其在电子学和光电子学领域的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Electronic band structure of high-symmetry homobilayers of transition metal dichalcogenides

Electronic band structure of high-symmetry homobilayers of transition metal dichalcogenides
High-symmetric homobilayer transition metal dichalcogenides (TMDs) are important members of the bilayer (BL) van der Waals material family. Here we present a systematic study of the electronic band structure in low-energy regime in homo-BL TMD structures by using the standard k·p method. Six types of BL TMD stacking configurations, which satisfy the C3 symmetry are considered and they are HMM, HXM, HXX, RMM, RXM, and RMX. The intrinsic spin-orbit coupling (SOC) in the conduction and valence bands and the phase of interlayer hopping matrix elements are included in our investigation. Taking BL MoS2 as an example, we examine the electronic energy spectra, the electron density of states, and the Fermi energies in these BL structures. We find that the electron energy dispersions in high-symmetric BL TMDs are not parabolic-like, where the band parameters (such as the energy gap, the effective electron band mass and the fourth-order correction coefficient in different subbands) depend markedly on the stacking configurations. Interestingly, the spin splitting in H-stacked BL TMDs is suppressed because of center-inversion symmetry and time-reversal symmetry. Importantly, the phase of the interlayer hopping matrix element affects significantly the electronic properties of HXX and RMM stacked BL TMDs. The methodology and the results presented in this study can foster further exploration of the basic physical properties of BL TMDs for potential applications in electronics and optoelectronics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review B
Physical Review B 物理-物理:凝聚态物理
CiteScore
6.70
自引率
32.40%
发文量
0
审稿时长
3.0 months
期刊介绍: Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide. PRB covers the full range of condensed matter, materials physics, and related subfields, including: -Structure and phase transitions -Ferroelectrics and multiferroics -Disordered systems and alloys -Magnetism -Superconductivity -Electronic structure, photonics, and metamaterials -Semiconductors and mesoscopic systems -Surfaces, nanoscience, and two-dimensional materials -Topological states of matter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信